United States Patent

US009224259B1

(12) 10) Patent No.: US 9,224,259 B1
Miller et al. 45) Date of Patent: Dec. 29, 2015
(54) CONFLICT RESOLUTION IN (56) References Cited
ASYNCHRONOUS MULTIPLAYER GAMES
U.S. PATENT DOCUMENTS
(75) Tnventors: Scott G. Miller, Austin, TX (US); Nimai 2005/0288103 Al* 122005 KONUMA w..ovovroverrrerro 463/42
Malle, Austin, TX (US) 2012/0094751 Al* 4/2012 Reynolds et al. 463/29
2013/0053150 Al* 2/2013 Milleretal. ... 463/42
(73) Assignee: Zynga Inc., San Francisco, CA (US) * cited by examiner
£) Notice: Subi disclai h fihi Primary Examiner — Tramar Harper
(*) Notice: ut JetCt, to artly dls(ci almeé,.t tefiermdo t 3; (74) Attorney, Agent, or Firm — Schwegman Lundberg &
patent is extended or adjusted under Woessner, PA.
U.S.C. 154(b) by 699 days.
57 ABSTRACT
(21) Appl. No.: 13/477,891 A method and system to host. a cor.npute.r-imp.lemented mul-
tiplayer game includes functionality to identify and resolve
_ conflicts resulting from asynchronous game play. Client sys-
(22) Filed: May 22, 2012 tem game state information that changes responsive to in-
game actions performed on a client system is intermittently
synchronized with authoritative game state information, dur-
Related U.S. Application Data ing which the in-game actions may be validated. Actions that
- o fail a prerequisite check based on the authoritative game state
(60) gr%lls 110na1 application No. 61/530,581, filed on Sep. information are analyzed in automated fashion to determine
’ ’ whether they are redundant actions that fail the prerequisite
check owing to their having been performed with respect to
(51) Int.ClL outdated client system game state information. One or more
GO7F 17/32 (2006.01) remedial actions are performed for respective redundant
(52) U.S.CL actions, e.g., by allowing the redundant action and modifying
(6 S GO7F 17/32 (2013.01) the game state, by restoring spent resources to affected play-
(58) Field of Classification Search ers, or by dlsall.owmg .both the redundant action and an asso-
None ciated preempting action.

See application file for complete search history.

Receive Action Identifiers
504

'

Receive Provisional Game
State Information

508 i
|
Execute Validation Actions | | Identify Redundant Action
812 653
T

L

[Compare Results of Validation|
Actions to Provisional Game
State Information

516

21 Claims, 11 Drawing Sheets

Receive Action |dentifiers
524

Receive Provisional Game

520 State Information
\’ ﬂ

!

Transmit Validation Request
532

!

Receive Validation Result
536

|

|

|

. !
Perform Remedial Action | Generate Updated Game

655 State Information
540

Persist Updated Game State
Information
544

US 9,224,259 B1

Sheet 1 of 11

Dec. 29, 2015

U.S. Patent

100
/

o
©
~

140
(
Social
Networking
System

Game
Networking

System

Client System

150

FIG. 1

US 9,224,259 B1

Sheet 2 of 11

Dec. 29, 2015

U.S. Patent

0z
0ty TOEr /
| Lomosy | \ woysAs JualQ PUCoss -
_ J0Ipuag - \\ﬂ
- _ - - — .
"tz [g
I 1senbay \\ | 3z _ .
_ co_Hmv__m> _ _ ~ P \‘“ ocmmwemmwﬁm _/ N mu_n_
L4 1~
\ -
o~ / | —_— "] \ = TO07
1454 | ysor _ /
Aleigr oleig ewes \ _ % _ I ImW_Eb ﬂ_ / H
~_ Y27 Y
57 | _ £ 1 T T : N
~—=2_ 1 | uopewioy _
21607 uonepiieA _ H_mmwm_ | %S ofeg | \ I
~ TS 55
— 1 | uonepiep | N _ Gl ¢le
ate |l | === N 2
N yd _ _ o b 607 a1epdn o160 sweo)
uoneulwie}s(] UONBWLIOU| B1E1S _ _
Aauepunpay _I Juswuosnug = mE S N VA
= _ |_4| _ (co_ww/\\a co__u<* v oy / Aieiqr 91R1S SWeN)
ouIBug uoiepIeA _ _ v0C
auibug sweo)
e
| | ww
_ _ 21607 maip, swen
— [
0¢¢ ove _ waisAg U89 1814
Wa)SAS UoneplieA wajsAg Juswabeur)y awes
00T |
walsAS BuOMBN swes) swajshs Jusl|o

U.S. Patent

Dec. 29, 2015

Sheet 3 of 11

Validation System
220

Validation Engine
224

Game State Library
232

Validation Logic
228

Comparison Module
308

Receiving Module
304

Redundancy
Determination
Module
312

FIG. 3A

US 9,224,259 B1

Game Managfgwent System

s Validation Validation Result
Recelwdr:&module Request Module Receiver
= 408 412
Persistence Game State
Updatﬂ\élodule Module Retrieval Module
Al 420 424
Conflict Resolution Engine
430
. State Cost
Triage Module Assessment Determination
433 Module Module
41 437

FIG. 3B

U.S. Patent

Dec. 29, 2015 Sheet 4 of 11 US 9,224,259 B1

Game Manag;gwent System

Validation Engine Receiving module
224 404

Conflict Resolution Engine
430

Redundancy
Determination
Module
312

State Cost
Triage Module Assessment Determination
433 Module Module
el 437

FIG. 4

U.S. Patent Dec. 29, 2015 Sheet 5 of 11 US 9,224,259 B1

Receive Action Identifiers / 500
204
Receive Provisional Game Fl G 5A
State Information IRt
208 !
|
v v
Execute Validation Actions | > ldentify Redundant Action
912 653
I
Y
Compare Results of Validation
Actions to Provisional Game
State Information
216
Receive Action Identifiers
524
Receive Provisional Game
520 State Information
~> 508
Transmit Validation Request
532
________________ Receive Validation Result
: 536
|
! Y
Perform Remedial Acton | - Generate Updated Game
655 State Information
940
F|G 5B Persist Updated Game State
’ Information
544

U.S. Patent Dec. 29, 2015 Sheet 6 of 11 US 9,224,259 B1

Receive Action Identifiers

Indicating In-Game
Alctl%n(s) / 370

580

l

Access Authoritative
Game State Information

:

Determine that Action(s)
Failsa Prergggisite Check

I FIG. 5C

Determine That Action Is a
Redun%%rg Action

US 9,224,259 B1

Sheet 7 of 11

Dec. 29, 2015

U.S. Patent

899

UORYY SJEPIEA

171
INsay UOjepI[eA

739
sINAINQ
aledwon

JIUSURJ] PUE 8}RJSUSS

099
e uondy 8jepljeAul

A

959
UOOY UONEPIeA IO

259
8YY
a)isinba.sid

£5o
LUONY
JUBpUNPAY

889
UOIJROUION
UOBZIUOJYOUAS-UON JWsuel |

BRI

3

760
9)BIS PaZIUCIYDUAS O} LINOY
puy 80UB}SU| BUIES) PEOISY

789
UoNBLLIO|
8)e)S owen pajepiien 1sisiod

i

800
188nbay
a)epdn JILSURI| PUR 8)RIBUSL)

089
UOIRWLIOJU] B]81S SRS
PSIEPIEA PUE UONEULO|
9}B1g AWK JOl4 BUIGUIO)

+

¥29
Bo7 s1epdn 03 Blj8q doig swes

SJLM PUB BJRIS sweD) AIpopy

)

979
)INS6Y LONRPIRA 6AIBI8Y

+

v

029
(deyg) uonay swes)-u| 8jndsx3

GG9
(s)uonoy |eIpalsy Wiopsd

+

1)
}o8U9) aysIinba.sld Wioued

759
—> }oayo aysinbaisid wuousd

879
Kleiqi] sje1s swes) sjendod

- 79

188nbay UoEpIeA BAIBISY

V9 Ol

009 A -
0¢¢

welsAg uonepieA

079
1sanbay uoijepllep
JWSUBI | pue 8}eJsuss)

+

}

919
indu| Aejdawes) Jesn dn1808Y

[2]3¢
uoewLo|
BJBJS BWes) JOLd 8ZI|2LeS

+

719
80UejSU| BWeo) pajos|es PeoT

|

¥£9
uonewLo|
)RS BWRS) JOLd SABLIOY

+

800
80UBJSU| BWes) $108(83 Joke|d

3

Z£9
188nhay e1epdn sAI806Y

»

.

i
WIJSAS Jusuabeueyy swieo)

709

BLLBS) BUINUQ) $8SS800Y Jokeld

[}
WaysAS Jusl)

U.S. Patent Dec. 29, 2015 Sheet 8 of 11 US 9,224,259 B1

Parse Synchronization

NO—»! istory 653
734

YES

Y

Did
Client Game State
Information for Later Action
Have Indication of
Preemptin% Action?
736

Determine that there is
No Redu%jgnt Action |-&=NO

YESW

Identify Later Action as a
RedundY%rg Action

ype
Of Resource
Spent?
740

655 \
In-game
only

Amoun

of In-Game

esources Spent?
744

Purchased

rBeIow Threshold

Determine that Cost | Determine that Cost Is
el IT?-iVia&} Cost s Above Threshold—Jpm- N09H-i2via|

746

s State Conflict . .
Significant? e > AorlyTragelogic |
748 -
no
v y y
Reverse Redundant
Allow Both Preempting Revepr\%(taioaeg#gdant Allow Both Presmpting and Preempting
andEetdundant Compensate andEetdundant c Actions tang "
clions ctions ompensate Bo
750 RedungthActor 758 Plavers
- 156
Modify Environment Partially Compensate
State Ir;formation One of t7héa2 layers

760 162
FIG. 6B I

Generate and Send
— P Adwsor; Message |[@———
165

US 9,224,259 B1

Sheet 9 of 11

Dec. 29, 2015

U.S. Patent

q Jake|d
ajepdn X 9811 umoq doyn a1epdn
1Z# 91/ 0. —
0cL 80.
clL
ajepdn ¥ 9811 umoq doy) ajepdn
Vv 19/e|d

US 9,224,259 B1

Sheet 10 of 11

Dec. 29, 2015

U.S. Patent

8l0)g eleQ

CH8 [E190S

8 9l

L8 ges
019 ‘sobed qom 21013
wajshs ‘SobesSa\ ‘Oju| BleQ |e207
2078 BupomaN ydelo |e1oog
[e100S
A A
*0}8‘sabessa "019 ‘sajepdn
OJu| B}E)S BWen) ‘s)sanbay ee(e¥8
)
/98 I 0¢8
LaIshS WaJSAS aID
BuniomaN 00 ‘SIgjSuel]

q0¢8 awes)

ejeq ‘shejdsig

21015

ejeq swe
508 Jed aweg

awes ‘sinduj swes) €es8

/ 008

U.S. Patent Dec. 29, 2015 Sheet 11 of 11 US 9,224,259 B1

Social Networking System Game Networking System
924 922 922 924 922 922

924 922 926 924 922 926
920a x * 920b
930 Client Client - 930
o — —

900 930 Client Network Client 930
® @ °
® ®
[) []

FlG 9 930 Client Client - 930

1002—~{ Processor

. /1000
¢<—> Cache 1004
Bridge Inte;ace]

High Performance I/O Bus

; | -

1006

1012— I/O Bus System L —1014
Bridge Memory
t Standard /0 Bus ¢
1018—~] Mass e IO Ports [1020
Storage FlG 1 O

US 9,224,259 B1

1
CONFLICT RESOLUTION IN
ASYNCHRONOUS MULTIPLAYER GAMES

CLAIM OF PRIORITY

This application claims the benefit of priority under 35
U.S.C. §119(e) to U.S. Provisional Patent Application Ser.
No. 61/530,581, filed on Sep. 2, 2011, the benefit of priority
of which is claimed hereby, and which is incorporated by
reference herein in its entirety.

TECHNICAL FIELD

This disclosure generally relates to games and applications
in general and, in particular embodiments, to computer-
implemented games, such as online role-playing games
(RPGs) that are playable by more than one person from more
than one location.

BACKGROUND

In many online computer games, there is a virtual world or
some other imagined playing space where a player of the
game controls one or more player characters (herein “char-
acters,” “player characters,” or “PCs”). Player characters can
be considered in-game representations of the controlling
player. As used herein, the terms player, user, entity, neighbor,
friend, and the like may refer to the in-game player character
controlled by that player, user, entity, or friend, unless context
suggests otherwise. A game display can display a represen-
tation of the player character. A game engine accepts inputs
from the player, determines player character actions, decides
outcomes of events, and presents the player with a game
display illuminating game play. In some games, there are
multiple players, wherein each player controls one or more
player characters.

Many online computer games are operated on an online
social network. Such a network allows both users and other
parties to interact with the computer games directly, whether
to play the games or to retrieve game- or user-related infor-
mation. Internet users may maintain one or more accounts
with various service providers, including, for example, online
game networking systems and online social networking sys-
tems. Online systems can typically be accessed using browser
clients (e.g., Firefox, Chrome, Internet Explorer).

A client-side computing device or computer system may
present the online game to the user by executing coded game
logic or scripts for the online game. For example, a player
may visit a virtual city of the online game, and may perform
an in-game action by initiating a battle between the player’s
player character and another character in the virtual city. To
perform and animate the battle, the player’s client computing
device may execute game view logic (e.g., JavaScript or
ActionScript) to generate a visual representation of the in-
game action, while execution of the battle or in-game action
by game logic on the client computing device may make
changes to a game state associated with the player based on
the in-game action.

Such client-side execution of in-game actions allows near
real-time interaction between the player and the client com-
puting device, promoting immersive gameplay action. When
multiple players, however, perform actions with respect to a
common environment, environment state information on
respective client computing devices may be out of synchro-
nization with each other or with authoritative game state

10

15

20

25

30

35

40

45

50

55

60

65

2

information on a master database, which can occasionally
result in conflicts in environment state information and/or
player state information.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of a system for implementing
particular disclosed embodiments.

FIG. 2 illustrates a more detailed view of an example
system for implementing an example embodiment.

FIGS. 3A and 3B illustrate an example validation system
and game management system for implementing particular
disclosed embodiments.

FIG. 4illustrates an example game management system for
implementing particular disclosed embodiments.

FIGS. 5A, 5B and 5C illustrate high-level views of respec-
tive methods of implementing exemplary embodiments.

FIGS. 6A and 6B illustrate flowcharts for example meth-
ods of implementing particular disclosed embodiments.

FIG. 7 illustrates a timeline showing a series of actions by
two players with respect to a common environment in a mul-
tiplayer online game, resulting in a game state conflict.

FIG. 8 illustrates an example data flow in a system.

FIG. 9 illustrates an example network environment.

FIG. 10 illustrates an example computer system architec-
ture.

DESCRIPTION OF EXAMPLE EMBODIMENTS

One example embodiment may provide a method and sys-
tem to provide an asynchronous multiplayer game. The
method and system may include functionality to resolve con-
flicts in asynchronous multiplayer online gameplay. The
method may comprise, on a server-side validation system,
validating in-game actions performed on a client system in a
multiplayer online game, for example by executing server-
side validation actions identical to the in-game actions. Vali-
dating in-game actions may include performance of at least
one prerequisite check with respect to authoritative game
state information, such as master game state information
under control of the server-side validation system, to deter-
mine whether or not the in-game actions were permitted
actions. Actions that fail the prerequisite check may be iden-
tified as potentially invalid actions, and the system may deter-
mine for respective potentially invalid actions whether the
potentially invalid action is a redundant action that failed the
prerequisite check owing to its having been performed with
respect to outdated game state information on the client sys-
tem.

In-game actions are performed on the client system with
respect to client system game state information that is stored
on the client system and that is periodically or intermittently
synchronized with authoritative game state information
under the exclusive control of the server-side validation sys-
tem. Such synchronization may comprise updating the
authoritative game state information with respect to actions
performed on the client system since the last synchronization,
and incorporating game state changes resulting from the cli-
ent system in-game actions if those in-game actions are vali-
dated. The client system game state information is at the same
time updated to include game state changes resulting from
in-game actions that were performed by other players on
other client systems and that was synchronized with and
validated by the server-side validation system since the last
synchronization between the client system game state infor-
mation and the authoritative game state information.

US 9,224,259 B1

3

Situations may thus occur where the player, on the client
system, performs an in-game action which is valid based on
the client system game state information, but which is invalid
when based on the authoritative game state information at the
next synchronization. Such an action is referred to herein as a
redundant action, while the client system game state infor-
mation with respect to which a redundant action is originally
performed is occasionally referred to as outdated game state
information. A particular action by another player that causes
a change in the authoritative game state information, thereby
resulting in redundancy of the redundant action, is referred to
herein as a preempting action. For example, if a second player
upgrades an in-game object, e.g. a virtual building, but
upgrading of the object is not reflected in the client system
game state information of a first player when the first player
also upgrades the same object, then the upgrading action
performed by the second player is a preempting action with
respect to the redundant upgrading action performed by the
second player.

Example embodiments disclosed herein provide a system
and method to resolve such conflicts arising from asynchro-
nous multiplayer gameplay. Responsive to identifying a
potentially invalid action, it is determined whether or not the
invalid action is a redundant action. If a redundant action is
identified, a remedial action may be executed to resolve dif-
ferences between the client system game state information
and the authoritative game state information that result from
the redundant action. Performance of the remedial action may
be conditional upon a positive determination by the system
that the potentially invalid action is a redundant action. Reme-
dial actions may include, for example, restoring resources
spent on the redundant action by way of a reverse synchroni-
zation message, allowing the redundant action if predefined
criteria are satisfied, and reversing both the redundant action
and a preempting action performed by a second player.

In some embodiments, server-side coded validation logic
to perform the validation actions may be identical to client-
side coded game logic by which the in-game actions were
executed. In other embodiments, server-side validation may
be performed in a manner different from that by which vali-
dation is performed by client-side game logic.

An example game environment for implementing the
above-described method and system is described below,
whereafter the example embodiment is described in greater
detail, in the context of the example game environment.

Example Game Environment

FIG. 1 illustrates au example of a system for implementing
various disclosed embodiments. In particular embodiments,
system 100 comprises player 101, social networking system
140, game networking system 150, client system 130, and
network 160. The components of system 100 can be con-
nected to each other in any suitable configuration, using any
suitable type of connection. The components may be con-
nected directly or over a network 160, which may be any
suitable network. For example, one or more portions of net-
work 160 may be an ad hoc network, an intranet, an extranet,
avirtual private network (VPN), a local area network (LAN),
a wireless LAN (WLAN), a wide area network (WAN), a
wireless WAN (WWAN), a metropolitan area network
(MAN), a portion of the Internet, a portion of the Public
Switched Telephone Network (PSTN), a cellular telephone
network, another type of network, or a combination of two or
more such networks.

Social networking system 140 is a network-addressable
computing system that can host one or more social graphs. An

10

15

20

25

30

35

40

45

50

55

60

65

4

electronic social networking system typically operates with
one or more social networking servers providing interaction
between users such that a user can specity other users of the
social networking system as “friends.” A collection of users
and the “friend” connections between users can form a social
graph that can be traversed to find second, third and more
remote connections between users, much like a graph of
nodes connected by edges can be traversed.

Social networking system 140 can generate, store, receive,
and transmit social networking data. Social networking sys-
tem 140 can be accessed by the other components of system
100 either directly or via network 160. Game networking
system 150 is a network-addressable computing system that
can host one or more online games. Game networking system
150 can generate, store, receive, and transmit game-related
data, such as, for example, game account data, game input,
game state data, and game displays. Game networking system
150 can be accessed by the other components of system 100
either directly or via network 160. Player 101 may use client
system 130 to access, send data to, and receive data from
social networking system 140 and game networking system
150. Client system 130 can access social networking system
140 or game networking system 150 directly, via network
160, or via a third-party system. As an example and not by
way of limitation, client system 130 may access game net-
working system 150 via social networking system 140. Client
system 130 can be any suitable computing device, such as a
personal computer, laptop, cellular phone, smart phone, com-
puting tablet, or the like.

Although FIG. 1 illustrates a particular number of players
101, social networking systems 140, game networking sys-
tems 150, client systems 130, and networks 160, this disclo-
sure contemplates any suitable number of players 101, social
networking systems 140, game networking systems 150, cli-
ent systems 130, and networks 160. As an example and not by
way of limitation, system 100 may include one or more game
networking systems 150 and no social networking system
140. As another example and not by way of limitation, system
100 may include a system that comprises both social network-
ing system 140 and game networking system 150. Moreover,
although FIG. 1 illustrates a particular arrangement of player
101, social networking system 140, game networking system
150, client system 130, and network 160, this disclosure
contemplates any suitable arrangement of player 101, social
networking system 140, game networking system 150, client
system 130, and network 160.

The components of system 100 may be connected to each
other using any suitable connections 110. For example, suit-
able connections 110 include wireline (such as, for example,
Digital Subscriber Line (DSL) or Data Over Cable Service
Interface Specification (DOCSIS)), wireless (such as, for
example, Wi-Fior Worldwide Interoperability for Microwave
Access (WiMAX)) or optical (such as, for example, Synchro-
nous Optical Network (SONET) or Synchronous Digital
Hierarchy (SDH)) connections. In particular embodiments,
one or more connections 110 each include an ad hoc network,
an intranet, an extranet, a VPN, a LAN, a WLAN, a WAN, a
WWAN, a MAN, a portion of the Internet, a portion of the
PSTN, a cellular telephone network, another type of connec-
tion, or a combination of two or more such connections.
Connections 110 need not necessarily be the same throughout
system 100. One or more first connections 110 may differ in
one or more respects from one or more second connections
110. Although FIG. 1 illustrates particular connections 110
between player 101, social networking system 140, game
networking system 150, client system 130, and network 160,
this disclosure contemplates any suitable connections

US 9,224,259 B1

5

between player 101, social networking system 140, game
networking system 150, client system 130, and network 160.
As an example and not by way of limitation, in particular
embodiments, client system 130 may have a direct connec-
tion to social networking system 140 or game networking
system 150, bypassing network 160.

Game Networking Systems

In an online computer game, a game engine manages the
game state of the game and effects changes to the game state
based on in-game actions performed by a player (e.g., player
101 of FIG. 1). A game state comprises all game play param-
eters, including player character state, non-player character
(NPC) state, in-game object state, game world state (e.g.,
internal game clocks, game environment), and other game
play parameters. Each player 101 controls one or more player
characters (PCs). The game engine controls all other aspects
of the game, including non-player characters (NPCs) and
in-game objects. The game engine also manages game state,
including player character state for currently active (online)
and inactive (offline) players.

In the example environment illustrated in FIGS. 1 and 2, an
online game can be administered by game networking system
150, while a game engine 204 may be hosted on the client
device or client system 130. The game networking system
150 can be accessed by the client system 130 using any
suitable connection. A player may have a game account on
game networking system 150, wherein the game account can
contain a variety of information associated with the player
(e.g., the player’s personal information, financial informa-
tion, purchase history, player character state, game state). In
some embodiments, a player may play multiple games
administered by game networking system 150, which may
maintain a single game account for the player with respect to
all the games, or multiple individual game accounts for each
game with respect to the player. In some embodiments, game
networking system 150 can assign a unique identifier to each
player 101 of an online game administered by game network-
ing system 150. Game networking system 150 can determine
that a player 101 is accessing the online game by reading the
user’s cookies, which may be appended to Hypertext Transfer
Protocol (HTTP) requests transmitted by client system 130,
and/or by the player 101 logging onto the online game.

In embodiments in which the game engine 204 is provided
by the client system 130, player 101 may access the game and
control the game’s progress via client system 130 (e.g., by
inputting commands to the game at the client device). Client
system 130 may display the game interface by use of game
view logic 208 (FIG. 2), receive inputs from player 101, and
max perform in-game actions or events responsive to the user
inputs by means of game logic 212 forming part of the game
engine 204. The game logic 212 may effect changes to game
state information associated with the player 101 caused by the
in-game actions performed responsive to user input. The cli-
ent system 130 may also maintain a game state library 216
that stores game state information indicative of the game state
associated with the player 101. Game state information may,
for example, include player state information and world state
information or environment state information. This disclo-
sure discusses potentially invalid actions resulting from out-
of-sync game state information, and is thus applicable to any
multiplayer game in which respective devices store player-
specific game state information that are synchronized from
time to time with authoritative game state information (such
as master game state information), regardless of the particular
architecture for implementing such a multiplayer game.

The client system 130 may be in continuous communica-
tion with the game networking system 150 or may intermit-

10

15

20

25

30

35

40

45

50

55

60

65

6

tently transfer to the game networking system 150 update
information with respect to in-game actions executed by the
game engine 204. Client system 130 can thus, for example,
download client components of an online game, which are
executed locally, while a remote game server, such as game
networking system 150, provides backend support for the
client components and may be responsible for maintaining
the application data of the game, updating and/or synchroniz-
ing the game state based on the game logic 212 and each input
from the player 101, and transmitting instructions to client
system 130. Execution of the game engine 204 on the client
system 130 enables off-line and/or asynchronous gameplay
by a user via the client system 130.

Game Play

In particular embodiments, player 101 can engage in, or
cause a player character controlled by him to engage in, one
or more in-game actions. For a particular game, various types
of in-game actions may be available to player 101. As an
example and not by way of limitation, a player character in an
online role-playing game may be able to interact with other
player characters, build a virtual house, attack enemies, go on
a quest, and go to a virtual store to buy/sell virtual items. As
another example and not by way of limitation, a player char-
acter in an online poker game may be able to play at specific
tables, place bets of virtual or legal currency for certain
amounts, discard or hold certain cards, play or fold certain
hands, and play in a online poker tournament.

In particular embodiments, player 101 may engage in an
in-game action by providing one or more user inputs to client
system 130. Various actions may require various types and
numbers of user inputs. Some types of in-game actions may
require a single user input. As an example and not by way of
limitation, player 101 may be able to harvest a virtual crop by
clicking on it once with a mouse. Some types of in-game
actions may require multiple user inputs. As another example
and not by way of limitation, player 101 may be able throw a
virtual fireball at an in-game object by entering the following
sequence on a keyboard: DOWN, DOWN and RIGHT,
RIGHT, B. This disclosure contemplates engaging in in-game
actions using any suitable number and type of user inputs.

In particular embodiments, player 101 can perform an in-
game action on an in-game object or with respect to another
player character. An in-game object is any interactive element
of'an online game. In-game objects may include, for example,
PCs, NPCs, in-game assets and other virtual items, in-game
obstacles, game elements, game features, and other in-game
objects. This disclosure contemplates performing in-game
actions on any suitable in-game objects. For a particular in-
game object, various types of in-game actions may be avail-
able to player 101 based on the type of in-game object. As an
example and not by way of limitation, if player 101 encoun-
ters a virtual bear, the game engine may give him the options
of'shooting the bear or petting the bear. Some in-game actions
may be available for particular types of in-game objects but
not other types. As an example and not by way of limitation,
if player 101 encounters a virtual rock, the game engine may
give him the option of moving the rock; however, unlike the
virtual bear, the game engine may not allow player 101 to
shoot or pet the virtual rock. Furthermore, for a particular
in-game object, various types of in-game actions may be
available to player 101 based on the game state of the in-game
object. As an example and not by way of limitation, if player
101 encounters a virtual crop that was recently planted, the
game engine may give him only the option of fertilizing the
crop, but if player 101 returns to the virtual crop later when it
is fully grown, the game engine may give him only the option
of harvesting the crop.

US 9,224,259 B1

7

In particular embodiments, the game engine may cause one
or more game events to occur in the game. Game events may
include, for example, a change in game state, an outcome of
an engagement, a completion of an in-game obstacle, a trans-
fer of'an in-game asset or other virtual item, or a provision of
access, rights and/or benefits. In particular embodiments, a
game event is any change in game state. Similarly, any change
in game state may be a game event. This disclosure contem-
plates any suitable type of game event. As an example and not
by way of limitation, the game engine may cause a game event
where the virtual world cycles between daytime and night-
time every 24 hours. As another example and not by way of
limitation, the game engine may cause a game event where a
new instance, level, or area of the game becomes available to
player 101. As yet another example and not by way of limi-
tation, the game engine may cause a game event where player
101’s player character heals one hit point every 5 minutes.

In particular embodiments, a game event or change in game
state may be an outcome of one or more in-game actions. The
game engine can determine the outcome of a game event or a
change in game state according to a variety of factors, such as,
for example, game logic or rules, player character in-game
actions, player character state, game state of one or more
in-game objects, interactions of other player characters, or
random calculations. As an example and not by way of limi-
tation, player 101 may overcome an in-game obstacle and
earn sufficient experience points to advance to the next level,
thereby changing the game state of player 101°s player char-
acter (it advances to the next character level). As another
example and not by way of limitation, player 101 may defeat
a particular boss NPC in a game instance, thereby causing a
game event where the game instance is completed, and the
player advances to a new game instance. As yet another
example and not by way of limitation, player 101 may pick
the lock on a virtual door to open it, thereby changing the
game state of the door (it goes from closed to open) and
causing a game event (the player can access a new area of the
game).

In particular embodiments, player 101 may access particu-
lar game instances of an online game. A game instance is a
copy of a specific game play area that is created during runt-
ime. In particular embodiments, a game instance is a discrete
game play area where one or more players 101 can interact in
synchronous or asynchronous play. A game instance may be,
for example, a level, zone, area, region, location, virtual
space, or other suitable play area. A game instance may be
populated by one or more in-game objects. Each object may
be defined within the game instance by one or more variables,
such as, for example, position, height, width, depth, direction,
time, duration, speed, color, and other suitable variables. A
game instance may be exclusive (i.e., accessible by specific
players) or non-exclusive (i.e., accessible by any player). The
features relating to resolution of game state conflicts as
described herein may in many embodiments be with respect
to nonexclusive game instances, where multiple players may
perform actions with respect to commonly accessible in-
game objects, characters and/or environments. In particular
embodiments, a game instance is populated by one or more
player characters controlled by one or more players 101 and
one or more in-game objects controlled by the game engine.
When accessing an online game, the game engine may allow
player 101 to select a particular game instance to play from a
plurality of game instances. Alternatively, the game engine
may automatically select the game instance that player 101
will access. In particular embodiments, an online game com-
prises only one game instance that all players 101 of the
online game can access.

20

40

45

50

8

In particular embodiments, a specific game instance may
be associated with one or more specific players. A game
instance is associated with a specific player when one or more
game parameters of the game instance are associated with the
specific player. As an example and not by way of limitation, a
game instance associated with a first player may be named
“First Player’s Play Area.” This game instance may be popu-
lated with the first player’s PC and one or more in-game
objects associated with the first player. As used herein, a
player who is thus uniquely associated with a specific game
instance, and to whom certain actions are exclusively avail-
able, is referred to as a “host player.”

Such a game instance associated with a specific player may
be accessible by one or more other players, either synchro-
nously or asynchronously with the specific player’s game
play. As an example and not by way of limitation, a first player
(i.e., the host player) may be associated with a first game
instance, but the first game instance may be accessed by all
first-degree friends in the first player’s social network. As
used herein, players thus accessing a game instance associ-
ated with another player are referred to as “guest players.” In
particular embodiments, the game engine may create a spe-
cific game instance for a specific player when that player
accesses the game. As an example and not by way of limita-
tion, the game engine may create a first game instance when
a first player initially accesses an online game, and that same
game instance may be loaded each time the first player
accesses the game.

Inparticular embodiments, the set of in-game actions avail-
able to a specific player may be different in a game instance
that is associated with that player (e.g., in which the player is
a host player) compared to a game instance that is not asso-
ciated with that player (e.g., in which the player is a guest
player). The set of in-game actions available to a specific
player in a game instance associated with that player may be
a subset, superset, or independent of the set of in-game
actions available to that player in a game instance that is not
associated with him. As an example and not by way of limi-
tation, a first player may be associated with Blackacre Farm in
an online farming game. The first player may be able to plant
crops on Blackacre Farm. If the first player accesses a game
instance associated with another player, such as Whiteacre
Farm, the game engine may not allow the first player to plant
crops in that game instance. However, other in-game actions
may be available to the first player, such as watering or fer-
tilizing crops on Whiteacre Farm.

Example System

FIG. 2 illustrates an example embodiment of a game net-
working system 150 for implementing particular disclosed
embodiments. The game networking system 150 includes a
validation system 220 to validate in-game actions performed
in an online game. In the example embodiment of FIG. 2, the
validation system 220 is to validate in-game actions in a
multiplayer online game, typically a massively multiplayer
online game, but in other embodiments, the methodologies
and systems described herein can be employed to validate
in-game actions in a single player online game, for example
where client system game state information may become
outdated due to in-game actions by an administrator or NPCs.
It will be appreciated that the game networking system 150
typically serves multiple client systems 130 that are associ-
ated with respective players 101. For ease of description, only
two client systems and associated players are schematically
shown in FIG. 2, namely a first player 101 that plays the game

US 9,224,259 B1

9

on afirst client system 130, and a second player 201 that plays
the game on a similar or analogous second client system
130.1.

FIG. 3A illustrates an example validation system 220
forming part of the game networking system 150 of FIG. 2.
The validation system 220 may comprise a number of hard-
ware-implemented modules provided by one or more proces-
sors. The validation system 220 may include a receiving
module 304 to receive a validation request 222 (see FIG. 2)
that includes: one or more action identifiers to indicate cor-
responding in-game actions executed on the client system
130; and provisional game state information with respect to
the game state of the player 101 and execution of the one or
more in-game actions indicated by the validation request 222.
In some embodiments, the validation request 222 may
include player inputs received at the client system 130 to
cause execution of the relevant in-game actions.

The validation system 220 may further include a validation
engine 224 that comprises coded validation logic 228 to
execute validation actions identical to the in-game actions
identified in the validation request 222. The validation logic
228 may be identical to the game logic 212 forming part of the
game engine 204. As used herein, the term “identical” with
respect to coded logic means not only that identical opera-
tions are automatically performed responsive to identical
inputs, but also means that the code of the respective coded
logic is in the same format and/or computer programming
language and may thus be used interchangeably. In an
example embodiment, the game logic 212 and the validation
logic 228 may be identical sequences of ActionScript code. In
some instances, the validation engine 224 may be identical to
the game engine 204, while, in other example embodiments,
the validation engine 224 and the game engine 204 may be
different, but may have identical game logic 212 and valida-
tion logic. In other embodiments, server-side validation of
client-side in-game actions may be performed by validation
logic that is not identical to client-side game logic.

The validation engine 224 may further include a game state
library 232 to temporarily hold game state information with
respect to the player 101. The validation logic 228 and the
game state library 232 may be configured to cooperate, so that
the validation logic 228 executes validation actions based at
least in part on game state information stored in the game state
library 232, and updates or changes the game state informa-
tion in the game state library 232 based on the validation
actions.

A comparison module 308 (FIG. 3A) may further form part
of the validation system 220 to compare results of execution
of the validation actions (e.g., verification game state infor-
mation resulting from execution of the validation actions by
the validation logic 228) to the provisional game state infor-
mation included in the validation request 222. The compari-
son module 308 may be configured to validate the relevant
in-game actions by determining that the provisional game
state information is identical to the verification game state
information, e.g., that performance of the validation actions
by the validation engine 224 has the same eftect on the imme-
diately prior game state information as execution of the cor-
responding in-game actions by the game engine 204.

The validation system 220 may also include a redundancy
determination module 312 that is configured to determine
whether or not a potentially invalid action is a redundant
action. For example, the validation logic 228 may perform
prerequisite checks to determine whether or not a particular
in-game action was valid based on the authoritative game
state information at the time. Failure of such prerequisite
checks may be due to player malfeasance, or it may be due to

20

40

45

10

redundancy of the client system game state information with
respect to which the action was performed. The redundancy
determination module 312 may automatically parse relevant
game state information and/or synchronization history to
determine whether or not failure of a particular prerequisite
check is as a result of game state information redundancy.
Although the redundancy determination module 312 is, in
this example, shown to form part of the validation system 220,
the redundancy determination module 312 may, in other
embodiments, form part of a game management system, such
as the game management system 240 described below with
reference to FIGS. 2 and 4.

Referring to FIG. 2, the game networking system 150 may
further comprise a game management system 240 comprising
a game state database 244 in which validated game states for
a plurality of players may be persisted or stored. The game
management system 240 further comprises a synchronization
management device or synchronization manager 248 to
receive update requests 252 from client systems 130, to gen-
erate and send validation request 222 to the validation system
220, to receive a validation result 256 from the validation
system 220, and to persist validated game state information in
the game state database 244. In the example embodiment
shown in FIG. 2, the synchronization manager 248 is a Web
server. In other embodiments, the functionalities of the game
management system 240 and the validation system 220 may
be provided by a single game management system located at
aparticular site, so that action validation, game state synchro-
nization, and conflict resolution are performed by a single
game management system. An example of such a system is
later described herein with reference to FIG. 4.

FIG. 3B illustrates a number of components of an exem-
plary game management system 240, in this example embodi-
ment being provided by the Web server providing the syn-
chronization manager 248. The game management system
240 includes a receiving module 404 to receive an update
request 252 (see FIG. 2) that includes action identifiers indi-
cating a number of in-game actions executed on the game
engine 204 of the client system 130, and further includes
provisional game state information resulting from perfor-
mance of the relevant in-game actions. In some embodiments,
the provisional game state information may include the client
system game state information with respect to which the
in-game actions were performed. In this embodiment, how-
ever, the game management system 240 may include a game
state retrieval module 424 to retrieve prior game state infor-
mation that indicates previously validated authoritative game
state information immediately before execution of the rel-
evant in-game actions indicated in the update request 252.
The game management system 240 may further include a
validation request module 408 to generate and transmit a
validation request 222 in response to reception of the update
request 252. The game management system 240 further
includes a validation result receiver 412 to receive a valida-
tion result 256 (FIG. 2) that indicates whether or not in-game
actions included in the validation request 222 have been vali-
dated. An update module 416 may further be provided to
generate validated game state information based at least in
part on the provisional game state information included in the
update request 252 and based at least in part on the validation
result 256, and a persistence module 420 may be provided to
process the updated game state information and to persist the
updated game state information to the game state database
244. The updated and validated game state information forms
the authoritative game state information under the control of
the game management system 240, with respect to which
future in-game actions are to be validated.

US 9,224,259 B1

11

The game management system 240 may also provide a
conflict resolution engine 430 to resolve redundant actions
and/or game state conflicts that may stem from redundant
actions performed with respect to outdated or out-of-sync
game state information on the client system 130. Operation of
the conflict resolution engine 430 is described at greater
length below with reference to FIG. 6B and FIG. 7.

The conflict resolution engine 430 may, for example,
include a triage module 433 that comprises conflict resolution
logic to automatically decide one or more remedial actions
with respect to the game state conflict. Such remedial actions
may include, for example, validating one or both of the redun-
dant action and its associated preempting action, invalidating
one or both of the redundant action and its associated pre-
empting action, and/or ameliorating detrimental or undesired
in-game effects stemming from the redundancy (e.g., by
restoring spent resources associated with an invalidated
redundant action and/or an invalidated preempting action), by
state changes to in-game objects involved in the conflicting
actions, and/or by the adjustment of in-game score or expe-
rience levels).

The conflict resolution engine 430 may accordingly
include a cost determination module 437 to automatically
determine costs of the relevant actions, e.g. by assessing the
value of in-game resources spent in performing the actions.
The conflict resolution engine 430 may further include a state
assessment module 441 to determine and/or assess possible
game state conflicts (including, e.g., player state conflict and
world state conflicts) that may result from one or more per-
mutations of validating or invalidating the conflicting actions.

Although the conflict resolution engine 430 is shown, that
in this example embodiment, to form part of the game man-
agement system 240, the conflict resolution engine 430 may,
in other embodiments, be provided as part of the validation
system 220.

FIG. 4 shows an example embodiment of a game manage-
ment system 470 in which the conflict resolution engine 430
includes a redundancy determination module 312 such as that
described with reference to FIG. 3A. The game management
system 470 therefore operates without generating a validation
request that is sent to a validation system, instead of perform-
ing validation, redundancy determination, and conflict reso-
Iution on-board. The game management system 470 may
further include a validation engine 224 and a receiving mod-
ule 404.

Functionality of the validation system 220, the game man-
agement system 240 and their respective components, in
accordance with an example embodiment, are further
described below with respect to example methods.

Example Methods

FIG. 5A shows a flowchart 500 of a high-level view of an
example method, performed by a validation system such as
validation system 220 (FIG. 2), to validate in-game actions
performed in a multiplayer online game. The method of flow-
chart 500 comprises receiving from the game management
system 240 action identifiers, at operation 504, and provi-
sional game state information, at operation 508. The action
identifiers and provisional game state information may be
included in a validation request 222 that may be a serialized
communication, for example being in XML format. The
action identifiers may be with respect to a plurality of in-game
actions performed by the game logic 212, the provisional
game state information being with respect to changes to the
game state associated with the player 101 caused by execu-

20

25

30

40

45

50

55

12

tion of the in-game actions. The validation engine 224 may
thereafter execute validation actions, at operation 512, by use
of the validation logic 228.

Before or during execution of the validation actions, one or
more of the actions may be identified as a redundant action, at
653.

Results of execution of the validation actions, e.g., in the
form of verification game state information generated by the
validation engine 224, are compared, at operation 516, to the
provisional game state information included in the validation
request 222, to validate the in-game actions indicated by the
validation request 222. If the provisional game state informa-
tion with respect to a particular in-game action is identical to
verification game state information for a corresponding vali-
dation action, then the particular in-game actions may be
validated.

FIG. 5B shows a flowchart 520 of a high-level view of an
example method, performed by a game management system
such as game management system 240 (FIG. 2), to validate
in-game actions performed in a multiplayer online game. The
method of flowchart 520 comprises receiving from the client
system 130 a plurality of action identifiers, at operation 524,
and provisional game state information, at operation 528. The
action identifiers and provisional game state information may
be included in an update request 252 (FIG. 2) that may be a
serialized message, in the present example embodiment being
in XML format. A validation request 222 may thereafter be
transmitted, at operation 532, to the validation system 220, to
validate the in-game actions indicated by the action identifiers
in the update request 252 by executing validation actions
identical to the in-game actions by the validation logic 228
that may be identical to the game logic 212 of the game engine
204, on which the in-game actions were initially executed.
Note that, in other embodiments, validation of the in-game
actions may be performed differently.

The game management system 240 may subsequently
receive a validation result 256 (FIG. 2) from the validation
system 220, at operation 536, indicating that one or more of
the in-game actions have been validated, or indicating that
one or more redundant actions have been identified. If any of
the actions were identified as being a redundant action, reme-
dial action may be performed, at 655.

The game management system 240 may thereafter gener-
ate updated game state information, at operation 540, based
on the validation result 256 and based upon prior game state
information that indicates previously validated game state
information immediately before execution of the relevant
in-game actions. The updated game state information is then
persisted, at operation 544. Note that the result of the method
is to synchronize game state information between the client
system 130 and the game management system 240/470.
Therefore, synchronization is complete when, after operation
544, the game state information in the client system game
state library 216 is identical to the game state information on
the game state database 244.

FIG. 5C is a further example embodiment of a method that
may be performed by example systems described herein, for
example being performed by the game management system
470 of FIG. 4, although the method 570 may also be per-
formed by respective components of the validation system
220 and game management system 240 of FIG. 3A. The
method 570 may comprise receiving, at 580, one or more
action identifiers that indicate corresponding in-game actions
executed on a client system. Authoritative game state infor-
mation may be accessed, at 583, the authoritative game state
information indicating a validated game state prior to execu-
tion of the respective actions. It may thereafter automatically

US 9,224,259 B1

13

be determined whether or not the respective actions that fail
the prerequisite, e.g., by determining whether or not the
respective actions should have been allowed based on the
respective validated game states. If it is determined, at 586,
that a particular action fails a prerequisite check, it is deter-
mined, at 589, whether the particular action is a redundant
action. Determination of the redundancy of the particular
action may be by determining that the particular action was
erroneously permitted by the client system owing to its hav-
ing been performed on the client system with respect to out-
dated client system game state information.

FIG. 6 shows a more detailed flowchart 600 of a method to
validate in-game actions in a multiplayer online game, and to
synchronize game state information in the multiplayer online
game. The method of flowchart 600 may be implemented in
one embodiment by example system 100 of FIG. 1, with some
of'the operations being performed by example game manage-
ment system 240 or example validation system 220 described
with reference to FIGS. 3 and 4 above, in the game environ-
ment described with reference to FIGS. 1 and 2 above. The
flowchart of FIG. 6 is illustrated as being divided into so-
called swim lanes, to indicate which of the operations are
performed by the client system 130, the game management
system 240, or the validation system 220, respectively.

At operation 604, the player 101 may access the multi-
player online game on the client system 130. Although not
illustrated in the flowchart 600 of FIG. 6, the client system
130 may access a webpage hosted by social networking sys-
tem 140 on the game networking system 150, whereafter the
first player’s social networking information may be accessed.
In particular embodiments, social networking information on
the social networking system 140, the game networking sys-
tem 150, or both may be accessed. At operation 608, the
player 101 may select a game instance to access. In particular
embodiments, game instances can be selected from a set of
game instances associated with the first player’s friends in the
relevant social network. Here, the player 101 selects the game
instance uniquely associated with him/her. At operation 612,
the game engine 204 may then load the game instance asso-
ciated with the player 101. Loading of the game instance, at
operation 612, may include retrieving a last synchronized or
validated game state or game state information from the game
management system 240, and loading of the game state infor-
mation into the game state library 216 of the game engine 204
provided by the client system 130. In the present example
embodiment, the game state library 216 is a PHP: Hypertext
Preprocessor (PHP) library. Loading of the game instance
may further include generating, by use of the game view logic
208 (FIG. 2), a user interface including a game display that
includes a visual representation of a virtual in-game environ-
ment of the game instance.

The player 101 may provide gameplay input, at operation
616, to the client system 130, the input, for example, being
encountered by the game view logic 208. Upon receipt of
input to perform an action that may affect game state, one or
more assumption checks or prerequisite checks may be per-
formed, at operation 618, to check whether or not predefined
prerequisites or assumptions are satisfied in order to perform
the relevant actions. Such prerequisite checks may include,
for example, checking whether or not the player character has
a required minimum in-game experience level, whether an
in-game object on which the action is to be performed has a
predefined status to permit performance of the action, and so
forth. If the predefined prerequisite check(s) for a particular
in-game action is satisfied, the action is executed, at operation
620.

10

15

20

25

30

35

40

45

50

55

60

65

14

In-game actions that may affect game state information of
the player 101 may be executed, at operation 620, by the game
logic 212 of the game engine 204, the game logic 212 in this
instance being ActionScript code. The game logic 212 may be
configured such that in-game actions that affect game state
are modified into atomic logic elements that are referred to
herein, inter alia, as “steps.” InFIG. 2, an exemplary sequence
of'in-game actions or steps are illustrated as Actions A-C. In
some embodiments, logic common to the game engine 204
and the validation engine 224 (e.g., game logic 212 and iden-
tical validation logic 228 in the example embodiment of F1G.
2) may be limited to game logic that affects game state, while
other game logic (e.g., game logic that does not affect game
state information) may located on the client system 130 only.

Upon execution of each in-game action or step, at operation
620, the game engine 204 may modify the game state infor-
mation in the game state library 216, and may additionally
record the step or action and its resulting game state delta or
game state change(s), at operation 624, in an update log 215
(FIG. 2) forming part of the client system 130. In the present
example embodiment, the game state deltas or game state
changes recorded in the update log 215 may be game step
deltas respectively indicating changes to the game state infor-
mation caused by performance of a corresponding one of the
in-game actions or steps.

In the present example embodiment, game state informa-
tion in the game state library 216 may be maintained in a
property tree or graph with respect to the player 101. Such a
property tree may be maintained, for example by the game
management system 240, with respect to each of the multi-
plicity of players of the multiplayer online game, and may be
loaded into the game state library 216 upon loading of an
associated game instance by the game engine 204. The prop-
erty tree may contain nested sets of property values that are
organized locally. Each property of the property tree is
defined by a respective key, which may be a dot-separated list
oftree nodes and a final leaf name. Both nodes and names are
strings consisting of lowercase letters, numbers, dashes or
underscores. An example property tree for a simple slot
machine game may look as follows:

player.name:string

player.high_score:int

player.high_score.date:date

inventory.coins:int

achievements.match_three.state:int

achievements.match_two.state:int

Game state information in the exemplary form of a prop-
erty tree as described above may facilitate translation to XML
format, so that transmissions of game state information
between the game management system 240 and the client
system 130 may be serialized, for example being XML com-
munications. An XML version of the above exemplified prop-
erty tree, may read as follows:

<properties>
<player>
<name type="string”>
John Doe
</name>
<high_score type=“int”>
3500
<date type="string”>
2009.11.25 5:32:09
</date>
</high_score>
</player>
<inventory>

US 9,224,259 B1

15

-continued

16

-continued

<coins type="int”>
274
</coins>
</inventory>
<achievements>
<match-two>
<state type="int”>1</state>
</match_two>
<match_three>
<state type="int”>0</state>
</match_three>
</achievement>
</properties>

Game step information written to the update log 215 may
include inputs received for the respective actions or steps, and
game step deltas in the form of property changes to the prop-
erty tree or game state information resulting from execution
of the associated action or step. The client system 130 may
intermittently or periodically generate checkpoints or update
requests 252, at operation 628, with respect to in-game
actions or steps which have not yet been validated and/or
which have not been included in a previous update request
252, and may transmit the update request 252 to the game
management system 240.

The game client system 130 may produce a serialized
update request 252, for example in XML format. Each update
request 252 may include action identifiers for the associated
in-game actions, as well as provisional game state informa-
tion in the form of game step deltas resulting from the respec-
tive actions. The action identifiers may comprise an action
type or step type identifier, as well as identification of user
input that prompted performance of the action. Provisional
game state information may be provided for each action
included in the update request. Such action of a specific game
state information may comprise an absolute value for a par-
ticular property after completion of the action, or it may
comprise a change or delta to a particular property resulting
from performance of the action. The provisional game state
information may comprise only those properties of the player
character that have been affected by performance of the
respective action. An example serialized update request 252
may read as follows:

<checkpoint>
<properties user_id="1:12345">
... strata state
</properties>
<sync>
<property>
<name>sound</name>
<type>boolean</type>
<value>false</value>
</property>
</sync>
<step type="com.zynga.kingdoms.steps.Movement”>
<input><to>5</to></input>
<output>
<property>
<name>location</name>
<type>int</type>
<value>5</value>
</property>
<property>
<name>energy</name>
<type>int</type>
<delta>-1</delta>
</property>
</output>
</step>

10

15

20

25

30

35

40

45

50

55

60

65

<step type="com.zynga.kingdoms.steps.Movement”>
<input><to>6</to></input>
<output>
<property>
<name>location</name>
<type>int</type>
<value>6</value>
</property>
<property>
<name>energy</name>
<type>int</type>
<delta>-1</delta>
</property>
<foutput>
</step>
</checkpoint>

It will be noted that the above example XML checkpoint or
update request 252 includes a synchronization that blindly
sets the player state to advance non-validated player state
between steps. The example update request 252 above iden-
tifies two in-game actions. The first action is identified by an
action type identifier as being a movement action. The action
identifiers further include an input having a value of 5. Pro-
visional game state information in the form of game state
information for the first action comprises location and energy
level outputs resulting from performance of the first action.
Thus, the player character’s location has a value of 5 after
performance of the first movement action, while the energy
level of the player character is decremented by a single unit
due to the action. The second action indicated by action
identifiers in the above example XML update request 252
comprises a number movement action having an input value
of 6 and an output value of 6, while the performance of the
second movement action also results in decrementing of the
energy level by a further unit.

Update requests 252 such as that exemplified above may be
generated and transmitted at regular intervals (for example at
intervals of 30 seconds to two minutes), or may be generated
and transmitted intermittently. In instances of off-line play
input, information, output information, and game step deltas
may be stored in the update log 215 until the game client
system 130 is reconnected to the game management system
240, at which time the relevant information with respect to all
in-game actions which have not yet been included in a trans-
mitted update request 252 may be included in a single update
request 252. At the completion of the updating process
described with reference to FIG. 6A, and in some cases the
performance of remedial actions as described below with
reference to FIG. 6B, the game state library 216 of the client
system 130 is synchronized with the game state database 244
of the game management system 240.

In some instances, some ofthe in-game actions indicated in
the update request 252 may comprise actions or events having
an element of randomness. For example when a player char-
acter engages in an in-game battle with a nonplayer character,
the game engine 204 may generate a random seed as an input
before execution of the battle. The update request 252 may in
such instances include the randomly generated input, or ran-
dom seed, related to the in-game action or event.

Upon receipt of the update request 252 by the receiving
module 404 (FIG. 3B) of the game management system 240,
at operation 632, the game state retrieval module 424 (FIG.
3B) accesses a persistence subsystem in the form ofthe game
state database 244, and retrieves prior game state information,
at operation 634, with respect to the player 101 and the
particular game instance indicated by the update request 252.

US 9,224,259 B1

17

The prior game state information indicates previously vali-
dated game state information immediately before execution
of the one or more in-game actions indicated in the update
request 252. In the present example, the prior game state
information includes player state information 266 (FIG. 2),
and environment state information 262 in the example form
of world state information. The environment state informa-
tion 262 may indicate the last validated state of the in-game
environment or virtual world, for example indicating the loca-
tion, type, and states of virtual objects in the in-game envi-
ronment. The player state information 266 may, for example,
be a last validated property tree, such as that described above
with respect to the claim client system 130, for the relevant
player character. Both of the environment state information
262 and player state information 266 may be in a format that
is serializable.

The method of flowchart 600 may include serializing the
prior game state information, at operation 636, and may there-
after include generating and transmitting a validation request
222, at operation 640, by means of the validation request
module 408 (FIG. 3B). The validation request 222 includes
the action identifiers and provisional game state information
received in the update request 252 (e.g., action type identifi-
ers, input information, and output information), together with
serialized environment state information 262 and player state
information 266. The validation request 222 is transmitted, at
operation 640, to the validation system 220.

Upon receipt of the validation request 222, at operation
644, by the receiving module 304 (FIG. 3A) of the validation
system 220, game state library 232 of the validation engine
224 is populated, at operation 648, with the prior game state
information included in the validation request 222 (e.g., the
environment state information 262 and the player state infor-
mation 266).

Thereafter, validation actions corresponding to the
in-game actions indicated in the validation request 222 may
be performed by the validation logic 228 of the validation
engine 224. As mentioned before, the validation logic 228
may comprise ActionScript code identical to that of the game
logic 212 forming part of the game engine 204 of the game
client system 130, as shown in FIG. 2. Such performance of
the validation actions may comprise, with respect to each
action, performing a prerequisite check, at operation 652,
and, if the prerequisite check is successful, performing the
relevant validation action, at operation 656. It will be appre-
ciated that the prerequisite checks may be performed with
respect to the prior game state information in the game state
library 232. The prerequisite checks may, in particular, be
performed based on respective validated game states (as indi-
cated by the authoritative game state information) for each
action. One or more prerequisite check may thus be per-
formed for each action, to verify that predefined game state
information criteria (e.g., environment state information cri-
teria and/or player state information criteria) are satisfied by
the validated game state. Thus, for example, certain actions
with respect to certain in-game objects may only be available
when the objects are in a predefined state, while the player
character is in a predefined state, and so forth.

If the prerequisite check fails, the redundancy determina-
tion module 312 determines, at operation 653, whether or not
the relevant action is a redundant action, that is, an action for
which the prerequisite check failed owing to outdated or
out-of-sync client system game state information. The
method for determining whether or not a particular action is a
redundant action is described further below with reference to
FIG. 7. If the action under consideration is not a redundant
action, then the action may be an illegal action, possibly

10

15

20

25

30

35

40

45

50

55

60

65

18

owing to attempted hacking or player malfeasance, or the
action may fail the prerequisite check owing to a system bug
or programming error. In such cases, the action is invalidated,
at operation 660. If, however, it is determined, at operation
653, that the action under consideration is a redundant action,
the relevant action may be indicated as a redundant action in
a validation result 256, resulting in performance of remedial
action(s), at operation 655. In this example, the remedial
action(s) is performed by the triage module 433. Example
remedial actions, as well as conflict resolution logic for deter-
mining which remedial action to take are later described with
reference to FIG. 7.

Returning now to FIG. 6 A, performance of the validation
action, at operation 656, may include generation of verifica-
tion game state information, in this example being validation
output resulting from performance of the validation action.
Because the validation logic 228 is identical to the game logic
212, execution of identical actions based on identical game
state information should result in identical outputs. Game
state changes, deltas, or outputs resulting from performance
of each validation action may thus be compared, at operation
664, with the corresponding output of the associated in-game
action indicated in the validation request 222. If the validation
output (also referred to as the results of execution of the
relevant validation action) is identical to the corresponding
in-game output (also referred to as the provisional game state
information), then the in-game action is validated, at opera-
tion 668. If, however, there is a discrepancy between the
validation output and the corresponding in-game output, then
the relevant action is invalidated, at operation 660.

When a particular action is validated, at operation 668, the
sequence of operations to validate an action, at operations 652
to 668, is performed for the next in-game action indicated in
the validation request 222. The plurality of in-game actions
indicated in the validation request 222 are thus validated
stepwise, in sequence, until all of the actions have been vali-
dated, or until a first invalid action or redundant action is
identified, either by failure of a prerequisite check, at opera-
tion 652, or by identification of a discrepancy between the
validation output and the in-game output, at operation 664.

When validation of the sequence of in-game actions of the
validation request 222 is completed (or when one of the
in-game actions are invalidated or identified as being redun-
dant), the validation result 256 is generated and transmitted,
at operation 672, to the game management system 240. Gen-
eration of the validation result 256 may comprise assembling
or collating a resultant or cumulative game state delta result-
ing from all of the validated actions or steps. Property values
in the validation result 256 may thus indicate a final output
(e.g., for a property such as location) or a cumulative delta
(e.g., for property such as player character energy or experi-
ence) at the last validated action. The validation result 256
may again be serialized, in the example embodiment being an
XML document. An extract of an example validation result
256, following validation of all of the actions indicated in the
exemplary validation request 222 provided above, may look
as follows:

<checkpoint success="“true”>
<sync>
<property>
<name>sound</name>
<type>boolean</type>
<value>false</value>
</property>
<property>

US 9,224,259 B1

19

-continued

<name>location</name>
<type>int</type>
<value>6</value>
</property>
<property>
<name>energy</name>
<type>int</type>
<delta>-2</delta>
</property>
<property>
<name>rng_seed</name>
<type>int</type>
<value>1807257224</value>
</property>
</sync>
</checkpoint>

After receiving the validation result 256 at operation 676,
the game management system 240 may perform remedial
action(s), at 655, if required, and combines the game state
deltas for validated game state information indicated in the
validation result 256 with the prior game state information, at
operation 680, to produce updated game state information
that is whole, consistent, new game state information, in the
present example embodiment comprising validated environ-
ment state information 262 and validated player state infor-
mation 266. The validated game state information may be
stored by being persisted to the game state database 244, at
operation 684, thus forming updated authoritative game state
information.

In the event of invalidation of any in-game action by the
validation system 220 at operation 660 (and/or if the remedial
action(s) includes invalidation of any action), the game man-
agement system 240 may communicate a non-synchroniza-
tion notification to the client system 130, at operation 688, to
notify the client system 130 that the game state information of
the client system 130 is out of synchronization with the game
management system 240, e.g., that the provisional game state
information included in the update request 252 could not be
completely validated. The non-synchronization notification
may identify the last or furthest validated action and/or may
indicate furthest validated for validated game state informa-
tion. In response to receiving the non-synchronization notifi-
cation, the client system 130 may cause operation of the game
engine 204 to stop gameplay, forcing the player to reload the
game instance, and returning to a furthest consistent or syn-
chronized state, at operation 692, as indicated in the non-
synchronization notification.

The contflict resolution engine 430 may serve to resolve
conflicts stemming from concurrent actions (e.g., including
identified redundant actions) performed by different players
owing to the game state information on one of their client
systems 130 conflicting with the authoritative game state
information in the game state database 244 when the associ-
ated update request 252 is sent. Such conflict resolution may
include performance of the remedial action(s), at 655. As
used herein, the term “game state information” may in some
embodiments encompass both environment state information
and player state information. The architecture and validation
method described with reference to FIG. 2 permits asynchro-
nous play, in that a player’s client system 130 is not in direct
and continual communication with the game management
system 240, but instead only intermittently communicates
update requests 252 to validate in-game actions and to syn-
chronize game state information on the player’s game engine
204 and on the central game state database 244. Two or more

10

15

30

35

45

20

players may thus play the game asynchronously, potentially
giving rise to game state conflicts.

For example, when two or more players perform actions
with respect to a common in-game object, situations can
occur where one player performs an in-game action that is
permitted on the associated client system 130 based on client
system game state information (e.g., the game state informa-
tion stored in the game state library 216 when the relevant
action is performed) that is out-of-sync with master game
state information (also referred to herein as authoritative
game state information) in the master game state database 244
atsynchronization time, while the action would not have been
permitted if the client system game state information was
synchronized with the authoritative game state information
when the action was performed. As described previously,
when an update request 252 with respect to such a conflicting
in-game action is received, a prerequisite check operation
(e.g. at 652 in FIG. 6A) by the validation system 220 is
performed based on authoritative game state information pro-
vided by the master game state database 244 that may be
different from the game state information on the player’s
game engine 204 when the action was performed, and may
thus indicate that certain actions are redundant, even though
such actions were validly performed by the game engine 204,
but based on outdated game state information. The conflict
resolution system, comprising the conflict resolution engine
430, is configured to address such conflicts, and, in certain
instances, to allow redundant actions. For ease of description,
two conflicting actions (e.g. two actions that are performed
with respect to a common in-game object or environment and
that may caused a conflict as described above) are referred to
as a preempting action and a redundant action. The preempt-
ing action may be the one of the relevant two actions which is
first communicated to the game management system 240 in a
synchronization or update request 252. The later synchro-
nized of the two actions may in such case be referred to as the
redundant action. Of course, there may in some instances be
more than one preempting actions, and more than one redun-
dant actions.

FIG. 7 shows a timeline of an example situation in which a
game state conflict and a resulting redundant action may
arise. The timeline of FIG. 7 is with respect to actions per-
formed using two respective client systems (indicated as first
client system 130 and second client system 130.1 in FIG. 2)
by two players 101, 201, in a shared virtual environment to
which both players have access and in which the players have
overlapping rights. For ease and clarity of description, player
101 (playing the game on the first client system 130) is further
referred to as player A, and player 201 (playing the game on
the second client system 130.1) is further referred to as player
B. The actions of player A are indicated above the timeline of
FIG. 7, while the actions of player B are indicated below the
timeline.

Player B may send an update request 252 at time 704,
synchronizing the game state information in the game state
library 216 of player B with the game state database 244 at
time 704. Player A may thereafter likewise update a series of
in-game actions at time 708.

Player A may thereafter perform an in-game action with
respect to an in-game object by, for example, chopping down
avirtual tree, at time 712. This action causes changes to client
system game state information in the game state library 216 of
player A, for example recording a change in client system
environment state information reflecting that the relevant tree
is chopped down, and reflecting depletion of resources in
player A’s client system player state information. When the
first client system 130 of player A next sends an update

US 9,224,259 B1

21

request 252, at time 720, the game state changes resulting
from chopping down a tree may be validated by the validation
engine 224 and may be recorded in the game state database
244 of the game management system 240.

Between successive synchronizations or update requests
252 by the second client system 130.1 of player B (for
example between the updates or checkpoints at times 704 and
724 of FIG. 7 respectively), the game engine 204 of the
second client system 130.1 is unaware of any in-game actions
performed by player A. Client system game state information
on the game engine 204 of player B may therefore be out of
sync with the game state database 244. For example, if player
B wishes to chop down, at time 716, the same tree that was
chopped down by player A (at time 712), the game engine 204
of player B will not be aware that the tree in question has
already been chopped down by player A. Because validation
checks for chopping down the tree based on the client system
game state information on the second client system 130.1 will
be passed, the game engine 204 of player B will allow player
B to chop down the relevant tree, and will animate and display
the action to player B. It will be appreciated that the above
situation would apply even ifthe chopping down of the tree by
player B were to occur (in real-time) after the update by
player A (attime 720), because the second client system 130.1
of player B only receives information indicative of prior
chopping down of the tree upon its first update (at time 724)
following the update by player A (at time 720). In this
example, chopping down of the tree by player A at 712 is a
preempting action with respect to the redundant action of
chopping down the tree by player B at 716.

The validation engine 224 thereafter performs validation of
the in-game actions performed by player B and identified in
the update request 252 sent at time 724. Such validation is
performed with reference to authoritative game state infor-
mation, e.g., environment state information 262 and player
state information 266 retrieved from the game state database
244. The authoritative game state information reflects the
previously validated chopping down of the relevant tree by
player A. When the validation engine 224 performs a prereq-
uisite check for chopping down the tree by player B, the
prerequisite check fails, because the tree that was chopped
down by player B had already been chopped down according
to the authoritative environment state information 262. The
game networking system 150 (or, in the example embodiment
of FIG. 4, the game management system 470) may include a
redundancy determination module 312 to determine whether
or not the invalidated action is a redundant action, and a
conflict resolution engine 430 to process the conflict and to
resolve the conflict in a least invasive or detrimental manner.

The redundancy determination module 312 may be con-
figured to determine whether a conflicting action is a redun-
dant action, and the conflict resolution engine 430 may per-
form remedial action(s), which may include allowing (and
therefore validating) the redundant action. A redundant action
is thus a conflicting action that was performed inadvertently
owing to out-of-sync game state information. If, however, the
redundancy determination module 312 determines that the
conflicting action is not a redundant action, e.g. not being
inadvertent, it may determine that the conflicting action is due
to malicious activity by player B (e.g. attempted hacking), or
is due to a system error (e.g., a programming bug).

FIG. 6B shows a flowchart of example methods of deter-
mining whether one of the conflicting actions is a redundant
action (generally indicated by reference numeral 653), and of
performing remedial action(s) (generally indicated by refer-
ence numeral 655.

25

40

45

50

22

A first step in determining whether or not a conflicting
action is aredundant action is to determine, at 730, whether or
not the two conflicting actions were performed by the same
player. If the conflicting actions were indeed performed by
the same player, it is determined, at 732, that there is no
redundant action, and the conflicting action will thus be dis-
allowed or invalidated by the validation system 220. Thus, for
example, if player A chopped down the same tree again after
time 712 (FIG. 7), then it may be assumed that the second
instance of chopping down a tree was due to a system bug or
to illegal activity by player A.

If, however, the conflicting actions were performed by
separate players, synchronization history information for the
relevant client systems (e.g. first client system 130 and second
client system 130.1) may be parsed, at 734, to consider the
time sequence of performance of the potentially redundant
action relative to updates or synchronizations between the
game management system 240 and the respective client sys-
tems of player A and player B, thereby to distinguish between
redundant actions and illegal/malicious actions or bugs. In
this example embodiment, the redundancy determination
module 312 is configured to determine, at 736, whether or not
client system game state information on the second client
system 130.1 of player B would have included an indication
of the preempting action (in this example of chopping down
of'the tree at time 712 by player A) at the time when player B
executed the potentially redundant action (e.g. chopping
down the tree at time 716).

For example, the conflicting action may be considered a
redundant action only if a synchronization or update by the
later synchronizing player (player B) that immediately pre-
cedes the potentially redundant action (e.g. the update at time
704, that precedes the action at time 716) precedes the syn-
chronization or update by the earlier synchronizing player
(player A) in which the preempting action is communicated to
the game management system 240 (e.g. the update at 720, that
communicates the action at 712). In some instances, the
redundant action may thus, in real-time, be performed before
the preempting action, but will be considered a redundant
action if its associated update or synchronization occurs after
the update or synchronization for the preempting action. In
other examples, the redundant action may be performed after
the update associated with the preempting action, but will still
be considered a redundant action because the client system
game state information of player B will not be apprised of the
preempting action until the first update by player B following
the update by player A for the preempting action.

To facilitate and enable discrimination by the validation
engine 224 between redundant actions and illegal actions or
bugs, synchronization history information that is indicative of
the time of respective in-game actions and updates, as well as
the identity of persons performing the actions and identities,
may be recorded and may be communicated to the validation
system 220 and the game management system 240, e.g. by
way of the update request 252 and/or the validation request
222.

Once it is determined, at 738, that a conflicting action is
indeed a redundant action (e.g., that it is an inadvertent con-
flicting action owing to out-of-sync game state information)
remedial action may be taken, at 655 by the validation system
220 and/or the game management system 240. The particular
remedial action to be taken may be action specific, and/or
may be determined by the conflict resolution logic or triage
logic provided by the triage module 473 based on the nature
of'the action, its effect on the in-game environment, and/or the
nature and amount of resources spent on performing the
redundant action.

US 9,224,259 B1

23

For example, a redundant action with a trivial cost and a
limited environmental effect may be allowed, at 750, so that
resources spent by the later acting player (e.g. player B in the
example of FIG. 7) remains spent, and the environment or
object with respect to which the redundant action was per-
formed remains in its state at the end of performance of the
redundant action. In the example of FIG. 7, e.g., chopping
down a tree may expend a relatively small amount of player
B’s in-game energy level, so that redundant chopping down
of'the tree by player B may be considered to have a trivial cost
to player B. In such an instance, player B will not be aware of
the redundancy of his action with respect to chopping down of
the tree, so that the conflict is effectively resolved in a least
invasive manner.

Whether a cost for a particular action is trivial or non-trivial
may be determined based on the nature or type of resource
expended on the action, and/or on the amount of the resource
expended. The cost of a particular action may be measured in
the in-game value of quantifiable resources spent on perform-
ing the action, and/or may include any other measurable
indication of something of value consumed in performance of
the action. In some instances, time or effort spent by the
player in performing the action may be taken into account for
determining the cost of the action, although such time or
effort is naturally not a resource that is refundable. In this
example embodiment, expenditure of any purchased resource
may be considered non-trivial, regardless of the amount of
resources expended. When a player thus spends an in-game
currency that has been purchased with out-of-game currency,
the associated action may invariably be considered to be
non-trivial. When, however, the expended currency is a non-
purchased in-game currency, the expense may be considered
trivial if it falls below a predefined threshold value and may be
considered non-trivial if it exceeds the threshold value.

The method 655 may thus include determining, at 738
(e.g., by cost determination module 437), a type of resource
spent in performing the redundant action. If the resources
spent in performing the redundant action include purchased
resources (e.g., in-game resources bought with out-of-game
currency), then it is determined, at 742, that the cost is non-
trivial. If, however, it is determined that only in-game
resources were spent on the redundant action, it may be
determined, at 744, whether or not the spent resources are
above or below a predetermined threshold, upon which deter-
mination that the cost is trivial, at 746, or that the cost is
non-trivial, at 742, may be based.

The game management system 240 (or, in another example
embodiment, game management system 470) may thereafter
determine, at 748 (e.g., by automated operation of the state
assessment module 441) whether or not a state conflict that
would result from allowing both the preempting action and
the redundant action would be significant. Thus, for example,
if the preempting action and the redundant action were
respectively to change the type of nature of a common object
to incompatible end states (such as by building different types
of buildings in a common sight), the state conflict is deter-
mined to be significant. In an example embodiment, a state
conflict is determined to be significant if they result in an
environment state conflict that cannot be resolved wall that
are not cumulative in nature, so that the conflict is unresolv-
able by changing player state information only. Responsive to
determining, at 748, that a conflict with trivial cost is not
associated with a significant state conflict, both the relevant
actions may be allowed, at 750.

Different remedial actions may be taken when a redundant
action with non-trivial cost is identified, at 742, or if a result-
ant environment or world state conflict(s) is determined to be

10

15

20

25

30

35

40

45

50

55

60

65

24

significant. In such cases, the triage module 433 applies con-
flict resolution logic in the example form of triage logic with
which it is preconfigured, so that triage decision-making is
applied in automated fashion. Example remedial actions per-
formed by the triage module 433 depending on the facts and
attributes of respective conflicts, are described below.

In some instances, the redundant action may be reversed, at
750, and the redundant actor or later acting player (e.g., player
B) may be compensated by restoring to the player in-game
resources (such as currency, funds, and/or energy) spent in
performance of the redundant action. If, e.g., in the example
of FIG. 7, the relevant action that is performed by both players
is the upgrading of an in-game building on which non-trivial
resources are spent, the validation system 220 may invalidate
the later, redundant action and restore to the later acting
player (player B) the relevant spent resources. This is referred
to as reverse syncing and may be effected by means of a
reverse sync message 274 that may be communicated by the
game management system 240 to the relevant client system
130, based on information included in the validation result
256.

Yet a different remedial action may be performed with
respect to a redundant action with non-trivial cost, where
there is a significant environment state conflict. In such
instances, both actions (i.e. both the earlier action and the
later action) may be invalidated and reversed, at 756, and both
players may be compensated, e.g. by being refunded for the
cost of the relevant actions. For example, if both players
change the same object to different objects of roughly equal
value, the triage module 433 automatically determine that
both the relevant actions are to be invalidated or disallowed.
If, e.g., player A changed/upgraded an object or area to a farm,
while player B in a later redundant action changed or
upgraded the same object to a blacksmith shop, the triage
logic may determine that the upgraded objects are more or
less equal in value and may allow neither of the actions. In
such a case, the environment state information may be
changed and reverse synched to both players, to reset the
relevant object to its state before performance of either of the
conflicting actions, and the spent resources may be reverse
synched to both players.

Yet a further remedial action may be performed with
respect to a redundant action with non-trivial cost, in which
both the earlier action and the later conflicting action may be
allowed and validated, at 758. For example, if player A first
upgrades a farm to, say, a level 2 farm and player B thereafter,
in a redundant action, also upgrades the same farm to level 2,
the triage module 433 may allow both of the upgrading
actions and may modity the environment state information, at
760, to reflect that the farm has been upgraded to a level 3
farm. Therefore, in some instances, allowing both of the
conflicting actions, at 758, may comprise applying the
respective effects on the environment state cumulatively, as in
the example of the double upgrade mentioned above. This
change in the environment state may be reverse synched to the
client system 130 of both players. Allowing both of the
actions may also comprise at least partially compensating one
or both of the players. In instances where the two players, for
example, upgraded the same object by differing amounts,
both updates may be allowed, and a portion of the resources
spent on the update may be refunded to one of the players. In
other instances, both players may be partially compensated,
e.g. being calculated pro rata according to a qualitative
assessment of the respective upgrades.

Note that the particular remedial actions described in this
example embodiment, and the triage logic that is applied to
identify appropriate remedial actions, are nonlimiting

US 9,224,259 B1

25

examples, and that, in other embodiments, other factors or
other combinations of factors may be taken into account for
automated triage decision-making.

The example method of FIG. 6 B shows identification and
remediation of a single redundant action, but note that, in
some embodiments, performance of the validation actions
(and therefore identification of further redundant actions and
performance of respective further remedial actions) may con-
tinue after a first or even subsequent redundant actions are
processed.

Any remedial action as described above may be accompa-
nied by an in-game message, e.g. in an information bubble,
advising the affected players of the remedial action that was
taken. For example, in the last example described above, an
advisory message may be generated and sent, at 765, to advise
both players that the relevant farm has been upgraded to level
3 because of a concurrent upgrade by the other player.

The example embodiments thus discloses a method and
system to host an asynchronous computer-implemented mul-
tiplayer game by receiving an action identifier that indicates a
first action executed on a first client system responsive to
player inputs received from a first player, the first action being
an in-game action that was a executed based at least in part on
client system game state information; accessing authoritative
game state information that indicates a validated game state
prior to execution of the first action, the authoritative game
state information having been validated by a game manage-
ment system; automatically determining, using one or more
processors, that the first action fails a prerequisite check
which establishes satisfaction by the first action of at least one
predefined game state prerequisite with respect to the vali-
dated game state; and responsive to determining failure of the
prerequisite check, determining that the first action is a redun-
dant action which was permitted by the first client system
owing to its being performed with respect to outdated client
system game state information.

Responsive to determining that the first action is a redun-
dant action, a remedial action may be executed to resolve
differences between the client system game state information
and the authoritative game state information resulting from
the first action. The remedial action may comprise restoring
to the first player spent resources associated with perfor-
mance of the redundant action (that is, the “first action”).

Instead, or in addition, the remedial action may comprise
restoring the authoritative game state information to a state
prior to performance by a second player of a preempting
action that caused the redundancy of the first action. Note that
the term “first action” does not mean that the relevant action
is performed first time (although that is on occasion possible),
or is synchronized first, but instead merely serves for the sake
of clarity to distinguish a particular action that is found to be
a redundant action from other in-game actions.

The remedial action may include restoring to the first
player the spent resources associated with performing the first
action, and may include restoring to the second player spent
resources associated with performing the preempting action.
In some embodiments, a portion of the totality of spent
resources may be restored. For example, only that part of the
spent resources constituted by spent in-game resources (con-
trasted with out-of-game resources, including out-of-game
currency| may be restored.

Restoring the authoritative game state information to the
state prior to performance of the preempting action may com-
prise restoring an in-game object that underwent a state-
change due to performance of the first action to its state prior
to performance of the preempting action. The method may in
such cases in include determining that the first action and the

5

10

15

20

25

30

35

40

45

50

55

60

26

preempting action were to change the object to different
respective object types of substantially equal value.

In some embodiments, the remedial action may comprise
validating the redundant action. In some instances, the redun-
dant action may be validated without invalidating an associ-
ated preempting action, so that both the redundant action and
the preempting action are allowed. In such cases, the method
may include the prior operations, upon which the validating
of the first action is conditional, of determining that the first
action was performed at a trivial cost to the first player, and
determining that the validating of the first action would not
result in an environment state conflict or would result in an
environmental state conflict that would not affect further
game play and that is therefore not significant. The preempt-
ing action and the redundant action may in such cases com-
prise upgrading or improving a common in-game object, the
validating of the first action resulting in upgrading of the
common in-game object to an extent greater than that which
would have resulted from performance solely of either the
preempting action or the first action based on their respective
game state information.

The method may include determining a cost to the first
player associated with performing the first action, and restor-
ing at least some spent resources to the first player responsive
to determination that the first action was performed at a non-
trivial cost to the first player. Determination of a non-trivial
cost may comprise determining that at least some of the spent
resources were purchased with out-of-game resources, or
were direct out-of-game expenses. Instead, or in addition,
determination of a non-trivial cost may rise to determining
that an in-game value of the spent in-game resources exceeds
a predefined threshold value.

Determination that the first action is a redundant action
may comprise determining that the preempting action was
performed by a second player on a second client system.
Instead, or in addition, determination that the first action is a
redundant action may comprise determining that the first
client system game state information at the time of perform-
ing the first action could not reflect prior game state changes
resulting from performance of the preempting action. Such a
determination may comprise determining that a most recent
synchronization between the first client system and the
authoritative game state information prior to performance of
the first action occurred before a synchronization with respect
to the preempting action between the authoritative game state
information and the second client system.

It is one benefit of the example embodiments described
with reference to the drawings that it promotes noninvasive
asynchronous operation of the game engine 204 on the client
system 130, as conflicts resulting from the asynchronous
gameplay and intermittent synchronization of client system
game state information on multiple client systems 130 are
resolved in a manner which, in some examples, is invisible to
the players, and in other examples, are minimally detrimental
ordisruptive to the players involved. Automated resolution by
the provision of the conflict resolution engine 430 and the
automated application of conflict resolution logic, as exem-
plified with reference to FIGS. 5 and 6, serve to reduce opera-
tor intervention and workload associated with resolving con-
flicting actions that necessarily result from asynchronous
gameplay.

Data Flow

FIG. 8 illustrates an example data flow between the com-
ponents of an example system 800. In particular embodi-
ments, system 800 can include client system 830, social net-
working system 820qa, and game networking system 8205. A
system 300 such as that described with reference to FIG. 3A

US 9,224,259 B1

27

may be provided by the client system 830, the social network-
ing system 820a, or the game networking system 82054, or by
any combination of these systems. The components of system
800 can be connected to each other in any suitable configu-
ration, using any suitable type of connection. The compo-
nents may be connected directly or over any suitable network.
Client system 830, social networking system 820a, and game
networking system 8205 can each have one or more corre-
sponding data stores such as local data store 825, social data
store 845, and game data store 865, respectively. Social net-
working system 820q and game networking system 8205 can
also have one or more servers that can communicate with
client system 830 over an appropriate network. Social net-
working system 820q and game networking system 8205 can
have, for example, one or more Internet servers for commu-
nicating with client system 830 via the Internet. Similarly,
social networking system 820a and game networking system
8205 can have one or more mobile servers for communicating
with client system 830 via a mobile network (e.g., GSM, PCS,
Wi-Fi, WPAN; etc.). In some embodiments, one server may
be able to communicate with client system 830 over both the
Internet and a mobile network. In other embodiments, sepa-
rate servers can be used.

Client system 830 can receive and transmit data 823 to and
from game networking system 82054. This data can include,
for example, webpages, messages, game inputs, game dis-
plays, HTTP packets, data requests, transaction information,
updates, and other suitable data. As discussed with reference
to the example embodiments of FIGS. 2-6, selected commu-
nications may be serialized documents, such as for example
XML documents. At some other time, or at the same time,
game networking system 8205 can communicate data 843,
847 (e.g., game state information, game system account infor-
mation, page info, messages, data requests, updates, etc.)
with other networking systems, such as social networking
system 820a (e.g., Facebook, Myspace, etc.). Client system
830 can also receive and transmit data 827 to and from social
networking system 820q. This data can include, for example,
webpages, messages, social graph information, social net-
work displays, HTTP packets, data requests, transaction
information, updates, and other suitable data.

Communication between client system 830, social net-
working system 820a, and game networking system 8205 can
occur over any appropriate electronic communication
medium or network using any suitable communications pro-
tocols. For example, client system 830, as well as various
servers of the systems described herein, may include Trans-
port Control Protocol/Internet Protocol (TCP/IP) networking
stacks to provide for datagram and transport functions. Of
course, any other suitable network and transport layer proto-
cols can be utilized.

In addition, hosts or end-systems described herein may use
avariety of higher layer communications protocols, including
client-server (or request-response) protocols, such as HTTP,
other communications protocols, such as HTTP-S, FTP,
SNMP, TELNET, and a number of other protocols may be
used. In addition, a server in one interaction context may be a
client in another interaction context. In particular embodi-
ments, the information transmitted between hosts may be
formatted as HyperText Markup Language (HTML) docu-
ments. Other structured document languages or formats can
be used, such as XML and the like. Executable code objects,
such as JavaScript and ActionScript, can also be embedded in
the structured documents.

In some client-server protocols, such as the use of HTML
over HTTP, a server generally transmits a response to a
request from a client. The response may comprise one or more

10

15

20

25

30

35

40

45

50

55

60

65

28

data objects. For example, the response may comprise a first
data object, followed by subsequently transmitted data
objects. In particular embodiments, a client request may
cause a server to respond with a first data object, such as an
HTML page, which itself refers to other data objects. A client
application, such as a browser, will request these additional
data objects as it parses or otherwise processes the first data
object.

In particular embodiments, an instance of an online game
can be stored as a set of game state parameters that charac-
terize the state of various in-game objects, such as, for
example, player character state parameters, non-player char-
acter parameters, and virtual item parameters. In particular
embodiments, game state is maintained in a database as a
serialized, unstructured string of text data as a so-called
Binary Large Object (BLOB). When a player accesses an
online game on game networking system 8204, the BLOB
containing the game state for the instance corresponding to
the player can be transmitted to client system 830 for use by
aclient-side executed object to process. In particular embodi-
ments, the client-side executable may be a FLASH-based
game, which can de-serialize the game state data in the
BLOB. As a player plays the game, the game logic imple-
mented at client system 830 maintains and modifies the vari-
ous game state parameters locally. The client-side game logic
may also batch game events, such as mouse clicks, and trans-
mit these events to game networking system 8205. Game
networking system 8205 may itself operate by retrieving a
copy of the BLOB from a database or an intermediate
memory cache (memcache) layer. Game networking system
8206 can also de-serialize the BLOB to resolve the game state
parameters and execute its own game logic based on the
events in the batch file of events transmitted by the client to
synchronize the game state on the server side. Game network-
ing system 8205 may then re-serialize the game state, now
modified, into a BLOB, and pass this to a memory cache layer
for lazy updates to a persistent database.

With a client-server environment in which the online
games may run, one server system, such as game networking
system 8205, may support multiple client systems 830. At any
given time, there may be multiple players at multiple client
systems 830 all playing the same online game. In practice, the
number of players playing the same game at the same time
may be very large. As the game progresses with each player,
multiple players may provide different inputs to the online
game at their respective client systems 830, and multiple
client systems 830 may transmit multiple player inputs and/or
game events to game networking system 8205 for further
processing. In addition, multiple client systems 830 may
transmit other types of application data to game networking
system 8205.

Inparticular embodiments, a computer-implemented game
may be a text-based or turn-based game implemented as a
series of web pages that are generated after a player selects
one or more actions to perform. The web pages may be
displayed in a browser client executed on client system 830.
As an example and not by way of limitation, a client applica-
tion downloaded to client system 830 may operate to serve a
set of webpages to a player. As another example and not by
way of limitation, a computer-implemented game may be an
animated or rendered game executable as a stand-alone appli-
cation or within the context of a webpage or other structured
document. In particular embodiments, the computer-imple-
mented game may be implemented using Adobe FLASH-
based technologies. As an example and not by way of limita-
tion, a game may be fully or partially implemented as a SWF
object that is embedded in a web page and executable by a

US 9,224,259 B1

29

Flash media player plug-in. In particular embodiments, one
or more described webpages may be associated with or
accessed by social networking system 820q. This disclosure
contemplates using any suitable application for the retrieval
and rendering of structured documents hosted by any suitable
network-addressable resource or website.

Application event data of a game is any data relevant to the
game (e.g., player inputs). In particular embodiments, each
application datum may have a name and a value, and the value
of'the application datum may change (i.e., be updated) at any
time. When an update to an application datum occurs at client
system 830, either caused by an action of a game player or by
the game logic itself, client system 830 may need to inform
game networking system 8205 of the update. For example, if
the game is a farming game with a harvest mechanic (such as
Zynga FarmVille), an event can correspond to a player click-
ing on a parcel of land to harvest a crop. In such an instance,
the application event data may identify an event or action
(e.g., harvest) and an object in the game to which the event or
action applies. For illustration purposes and not by way of
limitation, system 800 is discussed in reference to updating a
multi-player online game hosted on a network-addressable
system (such as, for example, social networking system 820a
or game networking system 8205), where an instance of the
online game is executed remotely on a client system 830,
which then transmits application event data to the hosting
system such that the remote game server synchronizes the
game state associated with the instance executed by the client
system 830.

In a particular embodiment, one or more objects of a game
may be represented as an Adobe Flash object. Flash may
manipulate vector and raster graphics, and supports bidirec-
tional streaming of audio and video. “Flash” may mean the
authoring environment, the player, or the application files. In
particular embodiments, client system 830 may include a
Flash client. The Flash client may be configured to receive
and run Flash application or game object code from any
suitable networking system (such as, for example, social net-
working system 820a or game networking system 8205). In
particular embodiments, the Flash client may be run in a
browser client executed on client system 830. A player can
interact with Flash objects using client system 830 and the
Flash client. The Flash objects can represent a variety of
in-game objects. Thus, the player may perform various in-
game actions on various in-game objects by making various
changes and updates to the associated Flash objects. In par-
ticular embodiments, in-game actions can be initiated by
clicking or similarly interacting with a Flash object that rep-
resents a particular in-game object. For example, a player can
interact with a Flash objectto use, move, rotate, delete, attack,
shoot, or harvest an in-game object. This disclosure contem-
plates performing any suitable in-game action by interacting
with any suitable Flash object. In particular embodiments,
when the player makes a change to a Flash object representing
anin-game object, the client-executed game logic may update
one or more game state parameters associated with the in-
game object. To ensure synchronization between the Flash
object shown to the player at client system 830, the Flash
client may send the events that caused the game state changes
to the in-game object to game networking system 8205. How-
ever, to expedite the processing and hence the speed of the
overall gaming experience, the Flash client may collect a
batch of some number of events or updates into a batch file.
The number of events or updates may be determined by the
Flash client dynamically or determined by game networking
system 8205 based on server loads or other factors. For
example, client system 830 may send a batch file to game

10

15

20

25

30

35

40

45

50

55

60

65

30

networking system 8205 whenever 50 updates have been
collected or after a threshold period of time, such as every
minute.

Asused herein, the term “application event data” may refer
to any data relevant to a computer-implemented game appli-
cation that may affect one or more game state parameters,
including, for example and without limitation, changes to
player data or metadata, changes to player social connections
or contacts, player inputs to the game, and events generated
by the game logic. In particular embodiments, each applica-
tion datum may have a name and a value. The value of an
application datum may change at any time in response to the
game play of a player or in response to the game engine (e.g.,
based on the game logic). In particular embodiments, an
application data update occurs when the value of a specific
application datum is changed. In particular embodiments,
each application event datum may include an action or event
name and a value (such as an object identifier). Thus, each
application datum may be represented as a name-value pair in
the batch file. The batch file may include a collection of
name-value pairs representing the application data that have
been updated at client system 830. In particular embodi-
ments, the batch file may be a text file and the name-value
pairs may be in string format.

In particular embodiments, when a player plays an online
game on client system 830, game networking system 8205
may serialize all the game-related data, including, for
example and without limitation, game states, game events,
and user inputs, for this particular user and this particular
game into a BLOB and store the BLOB in a database. The
BLOB may be associated with an identifier that indicates that
the BLOB contains the serialized game-related data for a
particular player and a particular online game. In particular
embodiments, while a player is not playing the online game,
the corresponding BLLOB may be stored in the database. This
enables a player to stop playing the game at any time without
losing the current state of the game that the player is in. When
aplayer resumes playing the game next time, game network-
ing system 8205 may retrieve the corresponding BLOB from
the database to determine the most-recent values of the game-
related data. In particular embodiments, while a player is
playing the online game, game networking system 8205 may
also load the corresponding BLOB into a memory cache so
that the game system may have faster access to the BLOB and
the game-related data contained therein.

Systems and Methods

In particular embodiments, one or more described
webpages may be associated with a networking system or
networking service. However, alternate embodiments may
have application to the retrieval and rendering of structured
documents hosted by any type of network-addressable
resource or web site. Additionally, as used herein, a user may
be an individual, a group, or an entity (such as a business or
third-party application).

Particular embodiments may operate in a WAN environ-
ment, such as the Internet, including multiple network-ad-
dressable systems. FIG. 9 illustrates an example network
environment 900, in which various example embodiments
may operate. Network cloud 960 generally represents one or
more interconnected networks, over which the systems and
hosts described herein can communicate. Network cloud 960
may include packet-based WAN (such as the Internet), private
networks, wireless networks, satellite networks, cellular net-
works, paging networks, and the like. As FIG. 9 illustrates,
particular embodiments may operate in a network environ-
ment 900 comprising one or more networking systems, such
as social networking system 920a, game networking system

US 9,224,259 B1

31

9205, and one or more client systems 930. The components of
social networking system 920a and game networking system
9205 operate analogously; as such, hereinafter they may be
referred to simply as networking system 920. Client systems
930 are operably connected to the network environment 900
via a network service provider, a wireless carrier, or any other
suitable means.

Networking system 920 is a network-addressable system
that, in various example embodiments, comprises one or
more physical servers 922 and data stores 924. The one or
more physical servers 922 are operably connected to network
cloud 960 via, by way of example, a set of routers and/or
networking switches 926. In an example embodiment, the
functionality hosted by the one or more physical servers 922
may include web or HTTP servers. FTP servers, and, without
limitation, webpages and applications implemented using
Common Gateway Interface (CGI) script, PHP Hyper-text
Preprocessor (PHP), Active Server Pages (ASP), HTML,
XML, Java, JavaScript, Asynchronous JavaScript and XML
(AJAX), Flash, ActionScript, and the like.

Physical servers 922 may host functionality directed to the
operations of networking system 920. Hereinafter servers 922
may be referred to as server 922, although server 922 may
include numerous servers hosting, for example, networking
system 920, as well as other content distribution servers, data
stores, and databases. Data store 924 may store content and
data relating to, and enabling, operation of networking sys-
tem 920 as digital data objects. A data object, in particular
embodiments, is an item of digital information typically
stored or embodied in a data file, database, or record. Content
objects may take many forms, including: text (e.g., ASCII,
SGML, HTML), images (e.g., jpeg, tif and gif), graphics
(vector-based or bitmap), audio, video (e.g., mpeg), or other
multimedia, and combinations thereof. Content object data
may also include executable code objects (e.g., games execut-
able within a browser window or frame), podcasts, and the
like. Logically, data store 924 corresponds to one or more of
a variety of separate and integrated databases, such as rela-
tional databases and object-oriented databases, that maintain
information as an integrated collection of logically related
records or files stored on one or more physical systems.
Structurally, data store 924 may generally include one or
more of a large class of data storage and management sys-
tems. In particular embodiments, data store 924 may be
implemented by any suitable physical system(s) including
components, such as one or more database servers, mass
storage media, media library systems, storage area networks,
data storage clouds, and the like. In one example embodi-
ment, data store 924 includes one or more servers, databases
(e.g., MySQL), and/or data warehouses. Data store 924 may
include data associated with different networking system 920
users and/or client systems 930.

Client system 930 is generally a computer or computing
device including functionality for communicating (e.g.,
remotely) over a computer network. Client system 930 may
be a desktop computer, laptop computer, personal digital
assistant (PDA), in- or out-of-car navigation system, smart
phone or other cellular or mobile phone, or mobile gaming
device, among other suitable computing devices. Client sys-
tem 930 may execute one or more client applications, such as
a web browser (e.g., Microsoft Internet Explorer, Mozilla
Firefox, Apple Safari, Google Chrome, and Opera), to access
and view content over a computer network. In particular
embodiments, the client applications allow a user of client
system 930 to enter addresses of specific network resources to
be retrieved, such as resources hosted by networking system
920. These addresses can be Uniform Resource Locators

20

25

35

40

45

50

55

32

(URLs) and the like. In addition, once a page or other resource
has been retrieved, the client applications may provide access
to other pages or records when the user “clicks” on hyperlinks
to other resources. By way of example, such hyperlinks may
be located within the webpages and provide an automated
way for the user to enter the URL of another page and to
retrieve that page.

A webpage or resource embedded within a webpage,
which may itself include multiple embedded resources, may
include data records, such as plain textual information, or
more complex digitally encoded multimedia content, such as
software programs or other code objects, graphics, images,
audio signals, videos, and so forth. One prevalent markup
language for creating webpages is HTML. Other common
web browser-supported languages and technologies include
XML, the Extensible Hypertext Markup Language
(XHTML), JavaScript, Flash, ActionScript, Cascading Style
Sheet (CSS), and, frequently, Java. By way of example,
HTML enables a page developer to create a structured docu-
ment by denoting structural semantics for text and links, as
well as images, web applications, and other objects that can
be embedded within the page. Generally, a webpage may be
delivered to a client as a static document; however, through
the use of web elements embedded in the page, an interactive
experience may be achieved with the page or a sequence of
pages. During a user session at the client, the web browser
interprets and displays the pages and associated resources
received or retrieved from the website hosting the page, as
well as, potentially, resources from other websites.

When a user at a client system 930 desires to view a
particular webpage (hereinafter also referred to as target
structured document) hosted by networking system 920, the
user’s web browser, or other document rendering engine or
suitable client application, formulates and transmits a request
to networking system 920. The request generally includes a
URL or other document identifier as well as metadata or other
information. By way of example, the request may include
information identifying the user, such as a user ID, as well as
information identifying or characterizing the web browser or
operating system running on the user’s client computing
device 930. The request may also include location informa-
tion identifying a geographic location of the user’s client
system or a logical network location of the user’s client sys-
tem. The request may also include a timestamp identifying
when the request was transmitted.

Although the example network environment 900 described
above and illustrated in FIG. 9 is described with respect to
social networking system 920a and game networking system
9205, this disclosure encompasses any suitable network envi-
ronment using any suitable systems. As an example and not
by way of limitation, the network environment may include
online media systems, online reviewing systems, online
search engines, online advertising systems, or any combina-
tion of two or more such systems.

FIG. 10 illustrates an example computing system architec-
ture, which may be used to implement a server 922 or a client
system 930. In one embodiment, hardware system 1000 com-
prises a processor 1002, a cache memory 1004, and one or
more executable modules and drivers, stored on a tangible
computer-readable medium, directed to the functions
described herein. Additionally, hardware system 1000 may
include a high performance input/output (1/0) bus 1006 and a
standard I/O bus 1008. A host bridge 1010 may couple pro-
cessor 1002 to high performance I/O bus 1006, whereas /O
bus bridge 1012 couples the two buses 1006 and 1008 to each
other. A system memory 1014 and one or more network/
communication interfaces 1016 may couple to bus 1006.

US 9,224,259 B1

33

Hardware system 1000 may further include video memory
(not shown) and a display device coupled to the video
memory. Mass storage 1018 and I/O ports 1020 may couple to
bus 1008. Hardware system 1000 may optionally include a
keyboard, a pointing device, and a display device (not shown)
coupled to bus 1008. Collectively, these eclements are
intended to represent a broad category of computer hardware
systems, including but not limited to general purpose com-
puter systems based on the x86-compatible processors manu-
factured by Intel Corporation of Santa Clara, Calif., and the
x86-compatible processors manufactured by Advanced
Micro Devices (AMD), Inc., of Sunnyvale, Calif., as well as
any other suitable processor.

The elements of hardware system 1000 are described in
greater detail below. In particular, network interface 1016
provides communication between hardware system 1000 and
any of a wide range of networks, such as an Ethernet (e.g.,
IEEE 802.3) network, a backplane, and the like. Mass storage
1018 provides permanent storage for the data and program-
ming instructions to perform the above-described functions
implemented in servers 822, whereas system memory 1014
(e.g., DRAM) provides temporary storage for the data and
programming instructions when executed by processor 1002.
1/0 ports 1020 are one or more serial and/or parallel commu-
nication ports that provide communication between addi-
tional peripheral devices, which may be coupled to hardware
system 1000.

Hardware system 1000 may include a variety of system
architectures, and various components of hardware system
1000 may be rearranged. For example, cache 1004 may be
on-chip with processor 1002. Alternatively, cache 1004 and
processor 1002 may be packed together as a “processor mod-
ule,” with processor 1002 being referred to as the “processor
core.” Furthermore, certain embodiments of the present dis-
closure may not require nor include all of the above compo-
nents. For example, the peripheral devices shown coupled to
standard I/O bus 1008 may couple to high performance 1/0
bus 1006. In addition, in some embodiments, only a single bus
may exist, with the components of hardware system 1000
being coupled to the single bus. Furthermore, hardware sys-
tem 1000 may include additional components, such as addi-
tional processors, storage devices, or memories.

An operating system manages and controls the operation of
hardware system 1000, including the input and output of data
to and from software applications (not shown). The operating
system provides an interface between the software applica-
tions being executed on the system and the hardware compo-
nents of the system. Any suitable operating system may be
used, such as the LINUX Operating System, the Apple
Macintosh Operating System, available from Apple Com-
puter Inc. of Cupertino, Calif., UNIX operating systems,
Microsoft® Windows® operating systems, BSD operating
systems, and the like. Of course, other embodiments are pos-
sible. For example, the functions described herein may be
implemented in firmware or on an application-specific inte-
grated circuit (ASIC).

Furthermore, the above-described elements and operations
can be comprised of instructions that are stored on non-
transitory storage media. The instructions can be retrieved
and executed by a processing system. Some examples of
instructions are software, program code, and firmware. Some
examples of non-transitory storage media are memory
devices, tape, disks, integrated circuits, and servers. The
instructions are operational when executed by the processing
system to direct the processing system to operate in accord
with the disclosure. The term “processing system” refers to a
single processing device or a group of inter-operational pro-

10

15

20

25

30

35

40

45

50

55

60

65

34

cessing devices. Some examples of processing devices are
integrated circuits and logic circuitry. Those skilled in the art
are familiar with instructions, computers, and storage media.
Modules, Components, and Logic
Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied (1) on a non-transitory machine-readable medium
or (2) in a transmission signal) or hardware-implemented
modules. A hardware-implemented module is a tangible unit
capable of performing certain operations and may be config-
ured or arranged in a certain manner. In example embodi-
ments, one or more computer systems (e.g., a standalone,
client or server computer system) or one or more processors
may be configured by software (e.g., an application or appli-
cation portion) as a hardware-implemented module that oper-
ates to perform certain operations as described herein.
Invarious embodiments, a hardware-implemented module
may be implemented mechanically or electronically. For
example, a hardware-implemented module may comprise
dedicated circuitry or logic that is permanently configured
(e.g., as a special-purpose processor, such as a field program-
mable gate array (FPGA) or an ASIC) to perform certain
operations. A hardware-implemented module may also com-
prise programmable logic or circuitry (e.g., as encompassed
within a general-purpose processor or other programmable
processor) that is temporarily configured by software to per-
form certain operations. It will be appreciated that the deci-
sion to implement a hardware-implemented module
mechanically, in dedicated and permanently configured cir-
cuitry, or in temporarily configured circuitry (e.g., configured
by software) may be driven by cost and time considerations.
Accordingly, the term “hardware-implemented module”
should be understood to encompass a tangible entity, be that
an entity that is physically constructed, permanently config-
ured (e.g., hardwired) or temporarily or transitorily config-
ured (e.g., programmed) to operate in a certain manner and/or
to perform certain operations described herein. Considering
embodiments in which hardware-implemented modules are
temporarily configured (e.g., programmed), each of the hard-
ware-implemented modules need not be configured or instan-
tiated at any one instance in time. For example, where the
hardware-implemented modules comprise a general-purpose
processor configured using software, the general-purpose
processor may be configured as respective different hard-
ware-implemented modules at different times. Software may
accordingly configure a processor, for example, to constitute
a particular hardware-implemented module at one instance of
time and to constitute a different hardware-implemented
module at a different instance of time.
Hardware-implemented modules can provide information
to, and receive information from, other hardware-imple-
mented modules. Accordingly, the described hardware-
implemented modules may be regarded as being communi-
catively coupled. Where multiple of such hardware-
implemented ~ modules exist contemporaneously,
communications may be achieved through signal transmis-
sion (e.g., over appropriate circuits and buses) that connect
the hardware-implemented modules. In embodiments in
which multiple hardware-implemented modules are config-
ured or instantiated at different times, communications
between such hardware-implemented modules may be
achieved, for example, through the storage and retrieval of
information in memory structures to which the multiple hard-
ware-implemented modules have access. For example, one
hardware-implemented module may perform an operation,
and store the output of that operation in a memory device to

US 9,224,259 B1

35

which it is communicatively coupled. A further hardware-
implemented module may then, at a later time, access the
memory device to retrieve and process the stored output.
Hardware-implemented modules may also initiate communi-
cations with input or output devices, and can operate on a
resource (e.g., a collection of information).

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by software)
or permanently configured to perform the relevant operations.
Whether temporarily or permanently configured, such pro-
cessors may constitute processor-implemented modules that
operate to perform one or more operations or functions. The
modules referred to herein may, in some example embodi-
ments, comprise processor-implemented modules.

Similarly, the methods described herein may be at least
partially processor-implemented. For example, at least some
of the operations of a method may be performed by one or
more processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within a
single machine, but deployed across a number of machines. In
some example embodiments, the processor or processors may
be located in a single location (e.g., within a home environ-
ment, an office environment or as a server farm), while in
other embodiments the processors may be distributed across
a number of locations.

The one or more processors may also operate to support
performance of the relevant operations in a “cloud comput-
ing” environment or as a “software as a service” (SaaS). For
example, at least some of the operations may be performed by
a group of computers (as examples of machines including
processors), with these operations being accessible via a net-
work (e.g., the Internet) and via one or more appropriate
interfaces (e.g., Application Program Interfaces (APIs).)
Miscellaneous

One or more features from any embodiment may be com-
bined with one or more features of any other embodiment
without departing from the scope of the disclosure.

A recitation of*‘a,” “an,” or “the” is intended to mean “one
or more” unless specifically indicated to the contrary.

The present disclosure encompasses all changes, substitu-
tions, variations, alterations, and modifications to the
example embodiments herein that a person having ordinary
skill in the art would comprehend. Similarly, where appropri-
ate, the appended claims encompass all changes, substitu-
tions, variations, alterations, and modifications to the
example embodiments herein that a person having ordinary
skill in the art would comprehend.

For example, the methods described herein may be imple-
mented using hardware components, software components,
and/or any combination thereof. By way of example, while
embodiments of the present disclosure have been described as
operating in connection with a networking website, various
embodiments of the present disclosure can be used in con-
nection with any communications facility that supports web
applications. Furthermore, in some embodiments the term
“web service” and “website” may be used interchangeably
and additionally may refer to a custom or generalized API on
adevice, such as a mobile device (e.g., a cellular phone, smart
phone, personal GPS, personal digital assistant, personal
gaming device), that makes API calls directly to a server. The
specification and drawings are, accordingly, to be regarded in
an illustrative rather than a restrictive sense. It will, however,
be evident that various modifications and changes may be
made thereunto without departing from the broader spirit and
scope of the disclosure as set forth in the claims and that the

5

15

20

25

30

35

40

45

50

55

60

65

36

disclosure is intended to cover all modifications and equiva-
lents within the scope of the following claims.
What is claimed is:
1. A method to host an asynchronous computer-imple-
mented multiplayer game, the method comprising:
receiving an action identifier that indicates a first action
executed on a first client system responsive to player
inputs received from a first player, the first action being
an in-game action that was a executed based at least in
part on client system game state information;

accessing authoritative game state information that indi-
cates a validated game state prior to execution of the first
action, the authoritative game state information having
been validated by a game management system;

automatically determining, using a validation engine com-
prising one or more processors configured to perform
the determining, that the first action fails a prerequisite
check which establishes satisfaction by the first action of
at least one predefined game state prerequisite with
respect to the validated game state;

in an automated operation performed using a redundancy

determination module comprising at least one processor
configured to perform the automated operation, respon-
sive to determining failure of the prerequisite check,
determining that the first action is a redundant action
which was permitted by the first client system owing to
its being performed with respect to outdated client sys-
tem game state information; and

responsive to determining that the first action is a redun-

dant action, executing a remedial action that comprises
restoring to the first player at least some spent resources
associated with performance of the first action.

2. The method of claim 1, wherein the remedial action
further serves to resolve differences between the client sys-
tem game state information and the authoritative game state
information resulting from the first action.

3. The method of claim 2, wherein the remedial action
comprises restoring the authoritative game state information
to a state prior to performance by a second player of a pre-
empting action that caused the redundancy of the first action.

4. The method of claim 3, wherein the remedial action
includes restoring to the second player at least some spent
resources associated with performing the preempting action.

5. The method of claim 3, wherein restoring the authorita-
tive game state information to the state prior to performance
of the preempting action comprises restoring an in-game
object that underwent a state-change due to performance of
the first action to its state prior to performance of the preempt-
ing action.

6. The method of claim 5, further comprising determining
that the first action and the preempting action were to change
the object to different respective object types of substantially
equal value.

7. The method of claim 1, further comprising:

determining that a second action performed by the first

player is a redundant action performed with respect to
outdated client system game state information; and
validating the second action.

8. The method of claim 7, further comprising the opera-
tions, upon which the validating of the second action is con-
ditional, of:

determining that the second action was performed at a

trivial cost to the first player; and

determining that the validating of the second action would

not result in an environment state conflict.

9. The method of claim 7, wherein redundancy of the
second action is caused at least in part by prior performance

US 9,224,259 B1

37

by a second player of a preempting action, the preempting
action and the second action comprising upgrading or
improving a common in-game object, the validating of the
second action resulting in upgrading of the common in-game
object to an extent greater than that which would have
resulted from performance solely of either the preempting
action or the second action based on their respective game
state information.

10. A system to host an asynchronous computer-imple-
mented multiplayer game, the system comprising:

a receiving module to receive an action identifier that indi-
cates a first action executed on a first client system
responsive to player inputs received from a first player,
the first action being an in-game action that was
executed based at least in part on client system game
state information;

avalidation engine comprising one or more computer pro-
cessors configured to perform a prerequisite check for
the first action based at least in part on authoritative
game state information that indicates a validated game
state prior to execution of the first action, to automati-
cally determine that the first action fails a prerequisite
check which establishes satisfaction by the first action of
at least one predefined game state prerequisite with
respect to the validated game state;

a redundancy determination module comprising at least
one computer processor configured to determine,
responsive to failure of the prerequisite check, that the
first action is a redundant action which was permitted by
the first client system owing to its being performed with
respect to outdated client system game state informa-
tion; and

a conflict resolution engine comprising one or more pro-
cessor devices configured to execute a remedial action
that comprises restoring to the first player at least some
spent resources associated with performance of the first
action.

11. The system of claim 10, wherein the conflict resolution
engine configured to perform the remedial action such as to
resolve differences between the client system game state
information and the authoritative game state information
resulting from the first action.

12. The system of claim 11, further comprising a cost
determination module to determine a cost to the first player
associated with performing the first action, the conflict reso-
Iution engine being configured to restore the spent resources
to the first player responsive to determination that the first
action was performed at a non-trivial cost to the first player.

13. The system of claim 12, wherein the conflict resolution
engine is configured to determine that the first action was
performed at a non-trivial cost to the first player responsive to
determining that at least some of the spent resources were
purchased with out-of-game resources.

14. The system of claim 12, wherein the conflict resolution
engine is configured to determine that the first action was
performed at a non-trivial cost of the first player responsive to
determining that an in-game value of the spent resources
exceeds a predefined threshold value.

15. The system of claim 11, wherein the conflict resolution
engine is configured such that the remedial action comprises
restoring the authoritative game state information to a state
prior to performance by a second player of a preempting
action that caused the redundancy of the first action.

16. The system of claim 10, wherein the conflict resolution
engine is configured such that the remedial action comprises
validating the first action.

10

20

25

40

45

38

17. The system of claim 10, wherein the redundancy deter-
mination module is configured to determine that the first
action is a redundant action by determining that a preempting
action which effected a game state change that resulted in
failure of the prerequisite check for the first action was per-
formed by a second player on a second client system.
18. The system of claim 17, wherein the redundancy deter-
mination module is configured to determine that the first
action is a redundant action by determining that the first client
system game state information at the time of performing the
first action could not reflect prior game state changes resulting
from performance of the preempting action.
19. The system of claim 18, wherein the redundancy deter-
mination module is configured to determine that the first
action is a redundant action by determining that a most recent
synchronization between the first client system and the
authoritative game state information prior to performance of
the first action occurred before a synchronization with respect
to the preempting action between the authoritative game state
information and the second client system.
20. A non-transitory machine-readable storage medium
storing instructions which, when performed by a machine,
cause the machine to:
receive an action identifier that indicates a first action
executed on a first client system responsive to player
inputs received from a first player, the first action being
an in-game action that was a executed based at least in
part on client system game state information;
access authoritative game state information that indicates a
validated game state prior to execution of the first action,
the authoritative game state information having been
validated by a game management system;

automatically determine, using one or more processors,
that the first action fails a prerequisite check which
establishes satisfaction by the first action of at least one
predefined game state prerequisite with respect to the
validated game state;

responsive to determining failure ofthe prerequisite check,

determine that the first action is a redundant action
which was permitted by the first client system owing to
its being performed with respect to outdated client sys-
tem game state information; and

responsive to determining that the first action is a redun-

dant action, executing a remedial action that comprises
restoring to the first player at least some spent resources
associated with performance of the first action.
21. A system comprising:
means for receiving an action identifier that indicates a first
action executed on a first client system responsive to
player inputs received from a first player, the first action
being an in-game action that was a executed based at
least in part on client system game state information;

means for accessing authoritative game state information
that indicates a validated game state prior to execution of
the first action, the authoritative game state information
having been validated by a game management system;

means for automatically determining, using one or more
processors, that the first action fails a prerequisite check
which establishes satisfaction by the first action of at
least one predefined game state prerequisite with respect
to the validated game state;

means for determining that the first action is a redundant

action which was permitted by the first client system
owing to its being performed with respect to outdated
client system game state information; and

means for executing, responsive to determining that the

first action is a redundant action, a remedial action that

US 9,224,259 B1
39

comprises restoring to the first player at least some spent
resources associated with performance of the first
action.

40

